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Summary. We introduce a very general method for high-dimensional classification, based on care-
ful combination of the results of applying an arbitrary base classifier to random projections of the
feature vectors into a lower-dimensional space. In one special case that we study in detail, the
random projections are divided into disjoint groups, and within each group we select the projection
yielding the smallest estimate of the test error. Our random projection ensemble classifier then ag-
gregates the results of applying the base classifier on the selected projections, with a data-driven
voting threshold to determine the final assignment. Our theoretical results elucidate the effect on
performance of increasing the number of projections. Moreover, under a boundary condition implied
by the sufficient dimension reduction assumption, we show that the test excess risk of the random
projection ensemble classifier can be controlled by terms that do not depend on the original data di-
mension and a term that becomes negligible as the number of projections increases. The classifier
is also compared empirically with several other popular high-dimensional classifiers via an extensive
simulation study, which reveals its excellent finite-sample performance.
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1. Introduction

Supervised classification concerns the task of assigning an object (or a number of objects) to one
of two or more groups, based on a sample of labelled training data. The problem was first studied
in generality in the famous work of Fisher (1936), where he introduced some of the ideas of Linear
Discriminant Analysis (LDA), and applied them to his Iris data set. Nowadays, classification problems
arise in a plethora of applications, including spam filtering, fraud detection, medical diagnoses, market
research, natural language processing and many others.

In fact, LDA is still widely used today, and underpins many other modern classifiers; see, for
example, Friedman (1989) and Tibshirani et al. (2002). Alternative techniques include support vector
machines (Cortes and Vapnik, 1995), tree classifiers and random forests (Breiman et al., 1984; Breiman,
2001), kernel methods (Hall and Kang, 2005) and nearest neighbour classifiers (Fix and Hodges, 1951).
More substantial overviews and in-depth discussion of these techniques, and others, can be found in
Devroye, Györfi and Lugosi (1996) and Hastie et al. (2009).

An increasing number of modern classification problems are high-dimensional, in the sense that
the dimension p of the feature vectors may be comparable to or even greater than the number of
training data points, n. In such settings, classical methods such as those mentioned in the previous
paragraph tend to perform poorly (Bickel and Levina, 2004), and may even be intractable; for example,
this is the case for LDA, where the problems are caused by the fact that the sample covariance matrix
is not invertible when p ≥ n.

Many methods proposed to overcome such problems assume that the optimal decision boundary
between the classes is linear, e.g. Friedman (1989) and Hastie et al. (1995). Another common approach
assumes that only a small subset of features are relevant for classification. Examples of works that
impose such a sparsity condition include Fan and Fan (2008), where it is also assumed that the features
are independent, as well as Tibshirani et al. (2003), where soft thresholding is used to obtain a sparse
boundary. More recently, Witten and Tibshirani (2011) and Fan, Feng and Tong (2012) both solve an
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optimisation problem similar to Fisher’s linear discriminant, with the addition of an ℓ1 penalty term
to encourage sparsity.

In this paper we attempt to avoid the curse of dimensionality by projecting the feature vectors at
random into a lower-dimensional space. The use of random projections in high-dimensional statistical
problems is motivated by the celebrated Johnson–Lindenstrauss Lemma (e.g. Dasgupta and Gupta,

2002). This lemma states that, given x1, . . . , xn ∈ R
p, ǫ ∈ (0, 1) and d > 8 logn

ǫ2 , there exists a linear

map f : Rp → R
d such that

(1− ǫ)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ǫ)‖xi − xj‖2,

for all i, j = 1, . . . , n. In fact, the function f that nearly preserves the pairwise distances can be found
in randomised polynomial time using random projections distributed according to Haar measure,
as described in Section 3 below. It is interesting to note that the lower bound on d in the Johnson–
Lindenstrauss lemma does not depend on p; this lower bound is optimal up to constant factors (Larsen
and Nelson, 2016). As a result, random projections have been used successfully as a computational
time saver: when p is large compared to log n, one may project the data at random into a lower-
dimensional space and run the statistical procedure on the projected data, potentially making great
computational savings, while achieving comparable or even improved statistical performance. As one
example of the above strategy, Durrant and Kabán (2013) obtained Vapnik–Chervonenkis type bounds
on the generalisation error of a linear classifier trained on a single random projection of the data. See
also Dasgupta (1999), Ailon and Chazelle (2006) and McWilliams et al. (2014) for other instances.

Other works have sought to reap the benefits of aggregating over many random projections. For
instance, Marzetta, Tucci and Simon (2011) considered estimating a p×p population inverse covariance

(precision) matrix using B−1
∑B

b=1 A
T
b (AbΣ̂A

T
b )

−1Ab, where Σ̂ denotes the sample covariance matrix

and A1, . . . ,AB are random projections from R
p to R

d. Lopes, Jacob and Wainwright (2011) used this
estimate when testing for a difference between two Gaussian population means in high dimensions,
while Durrant and Kabán (2015) applied the same technique in Fisher’s linear discriminant for a
high-dimensional classification problem.

Our proposed methodology for high-dimensional classification has some similarities with the tech-
niques described above, in the sense that we consider many random projections of the data, but is
also closely related to bagging (Breiman, 1996), since the ultimate assignment of each test point is
made by aggregation and a vote. Bagging has proved to be an effective tool for improving unstable
classifiers. Indeed, a bagged version of the (generally inconsistent) 1-nearest neighbour classifier is
universally consistent as long as the resample size is carefully chosen, see Hall and Samworth (2005);
for a general theoretical analysis of majority voting approaches, see also Lopes (2016). Bagging has
also been shown to be particularly effective in high-dimensional problems such as variable selection
(Meinshuasen and Bühlmann, 2010; Shah and Samworth, 2013). Another related approach to ours is
Blaser and Fryzlewicz (2015), who consider ensembles of random rotations, as opposed to projections.

One of the basic but fundamental observations that underpins our proposal is the fact that
aggregating the classifications of all random projections is not always sensible, since many of these
projections will typically destroy the class structure in the data; see the top row of Figure 1. For this
reason, we advocate partitioning the projections into disjoint groups, and within each group we retain
only the projection yielding the smallest estimate of the test error. The attraction of this strategy is
illustrated in the bottom row of Figure 1, where we see a much clearer partition of the classes. Another
key feature of our proposal is the realisation that a simple majority vote of the classifications based on
the retained projections can be highly suboptimal; instead, we argue that the voting threshold should
be chosen in a data-driven fashion in an attempt to minimise the test error of the infinite-simulation
version of our random projection ensemble classifier. In fact, this estimate of the optimal threshold
turns out to be remarkably effective in practice; see Section 5.2 for further details. We emphasise
that our methodology can be used in conjunction with any base classifier, though we particularly
have in mind classifiers designed for use in low-dimensional settings. The random projection ensemble
classifier can therefore be regarded as a general technique for either extending the applicability of an
existing classifier to high dimensions, or improving its performance. The methodology is implemented
in an R package RPEnsemble (Cannings and Samworth, 2016).

Our theoretical results are divided into three parts. In the first, we consider a generic base clas-
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Fig. 1. Different two-dimensional projections of 200 observations in p = 50 dimensions. Top row: three
projections drawn from Haar measure; bottom row: the projected data after applying the projections with
smallest estimate of test error out of 100 Haar projections with LDA (left), Quadratic Discriminant Analysis
(middle) and k-nearest neighbours (right).

sifier and a generic method for generating the random projections into R
d and quantify the difference

between the test error of the random projection ensemble classifier and its infinite-simulation coun-
terpart as the number of projections increases. We then consider selecting random projections from
non-overlapping groups by initially drawing them according to Haar measure, and then within each
group retaining the projection that minimises an estimate of the test error. Under a condition implied
by the widely-used sufficient dimension reduction assumption (Li, 1991; Cook, 1998; Lee et al., 2013),
we can then control the difference between the test error of the random projection classifier and the
Bayes risk as a function of terms that depend on the performance of the base classifier based on
projected data and our method for estimating the test error, as well as a term that becomes negligible
as the number of projections increases. The final part of our theory gives risk bounds for the first
two of these terms for specific choices of base classifier, namely Fisher’s linear discriminant and the
k-nearest neighbour classifier. The key point here is that these bounds only depend on d, the sample
size n and the number of projections, and not on the original data dimension p.

The remainder of the paper is organised as follows. Our methodology and general theory are
developed in Sections 2 and 3. Specific choices of base classifier as well as a general sample splitting
strategy are discussed in Section 4, while Section 5 is devoted to a consideration of the practical
issues of computational complexity, choice of voting threshold, projected dimension and the number of
projections used. In Section 6 we present results from an extensive empirical analysis on both simulated
and real data where we compare the performance of the random projection ensemble classifier with
several popular techniques for high-dimensional classification. The outcomes are very encouraging,
and suggest that the random projection ensemble classifier has excellent finite-sample performance in
a variety of different high-dimensional classification settings. We conclude with a discussion of various
extensions and open problems. Proofs are given in the Appendix and the supplementary material
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Cannings and Samworth (2017), which appears below the reference list.
Finally in this section, we introduce the following general notation used throughout the paper.

For a sufficiently smooth real-valued function g defined on a neighbourhood of t ∈ R, let ġ(t) and
g̈(t) denote its first and second derivatives at t, and let ⌊t⌋ and JtK := t− ⌊t⌋ denote the integer and
fractional part of t respectively.

2. A generic random projection ensemble classifier

We start by describing our setting and defining the relevant notation. Suppose that the pair (X,Y )
takes values in R

p × {0, 1}, with joint distribution P , characterised by π1 := P(Y = 1), and Pr, the
conditional distribution of X|Y = r, for r = 0, 1. For convenience, we let π0 := P(Y = 0) = 1 − π1.
In the alternative characterisation of P , we let PX denote the marginal distribution of X and write
η(x) := P(Y = 1|X = x) for the regression function. Recall that a classifier on R

p is a Borel
measurable function C : Rp → {0, 1}, with the interpretation that we assign a point x ∈ R

p to class
C(x). We let Cp denote the set of all such classifiers.

The test error of a classifier C is‡

R(C) :=

∫

Rp×{0,1}
1{C(x)6=y} dP (x, y),

and is minimised by the Bayes classifier

CBayes(x) :=

{
1 if η(x) ≥ 1/2;
0 otherwise

(e.g. Devroye, Györfi and Lugosi, 1996, p. 10). Its risk is R(CBayes) = E[min{η(X), 1 − η(X)}].
Of course, we cannot use the Bayes classifier in practice, since η is unknown. Nevertheless, we

often have access to a sample of training data that we can use to construct an approximation to the
Bayes classifier. Throughout this section and Section 3, it is convenient to consider the training sample
Tn := {(x1, y1), . . . , (xn, yn)} to be fixed points in R

p × {0, 1}. Our methodology will be applied to a
base classifier Cn = Cn,Tn,d

, which we assume can be constructed from an arbitrary training sample

Tn,d of size n in R
d × {0, 1}; thus Cn is a measurable function from (Rd × {0, 1})n to Cd.

Now assume that d ≤ p. We say a matrix A ∈ R
d×p is a projection if AAT = Id×d, the d-

dimensional identity matrix. Let A = Ad×p := {A ∈ R
d×p : AAT = Id×d} be the set of all such

matrices. Given a projection A ∈ A, define projected data zAi := Axi and yAi := yi for i = 1, . . . , n,
and let T A

n := {(zA1 , yA1 ), . . . , (zAn , yAn )}. The projected data base classifier corresponding to Cn is
CA
n : (Rd × {0, 1})n → Cp, given by

CA
n (x) = CA

n,T A
n
(x) := Cn,T A

n
(Ax).

Note that although CA
n is a classifier on R

p, the value of CA
n (x) only depends on x through its d-

dimensional projection Ax.
We now define a generic ensemble classifier based on random projections. For B1 ∈ N, let

A1, . . . ,AB1
denote independent and identically distributed projections in Ad×p, independent of

(X,Y ). The distribution on A is left unspecified at this stage, and in fact our proposed method
ultimately involves choosing this distribution depending on Tn.

Now set

νn(x) = ν(B1)
n (x) :=

1

B1

B1∑

b1=1

1{C
Ab1
n (x)=1}. (1)

For α ∈ (0, 1), the random projection ensemble classifier is defined to be

CRP
n (x) :=

{
1 if νn(x) ≥ α;
0 otherwise.

(2)

‡We define R(C) through an integral rather than R(C) := P{C(X) 6= Y } to make it clear that when C
is random (depending on training data or random projections), it should be conditioned on when computing
R(C).
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We emphasise again here the additional flexibility afforded by not pre-specifying the voting threshold
α to be 1/2. Our analysis of the random projection ensemble classifier will require some further
definitions. Let§

µn(x) := E{νn(x)} = P{CA1

n (x) = 1}.
For r = 0, 1, define distribution functions Gn,r : [0, 1] → [0, 1] by Gn,r(t) := Pr({x ∈ R

p : µn(x) ≤ t}).
Note that since Gn,r is non-decreasing it is differentiable almost everywhere; in fact, however, the
following assumption will be convenient:

Assumption 1. Gn,0 and Gn,1 are twice differentiable at α.

The first derivatives of Gn,0 and Gn,1, when they exist, are denoted as gn,0 and gn,1 respectively;
under assumption 1, these derivatives are well-defined in a neighbourhood of α. Our first main result
below gives an asymptotic expansion for the expected test error E{R(CRP

n )} of our generic random
projection ensemble classifier as the number of projections increases. In particular, we show that
this expected test error can be well approximated by the test error of the infinite-simulation random
projection classifier

CRP∗

n (x) :=

{
1 if µn(x) ≥ α;
0 otherwise.

Note that provided Gn,0 and Gn,1 are continuous at α, we have

R(CRP∗

n ) = π1Gn,1(α) + π0{1−Gn,0(α)}. (3)

Theorem 1. Assume assumption 1. Then

E{R(CRP
n )} −R(CRP∗

n ) =
γn(α)

B1
+ o
( 1

B1

)

as B1 → ∞, where

γn(α) := (1− α− JB1αK){π1gn,1(α)− π0gn,0(α)} +
α(1 − α)

2
{π1ġn,1(α)− π0ġn,0(α)}.

The proof of Theorem 1 in the Appendix is lengthy, and involves a one-term Edgeworth approxima-
tion to the distribution function of a standardised Binomial random variable. One of the technical
challenges is to show that the error in this approximation holds uniformly in the binomial proportion.
Related techniques can also be used to show that Var{R(CRP

n )} = O(B−1
1 ) under assumption 1; see

Proposition 4 in the supplementary material. Very recently, Lopes (2016) has obtained similar results
to this and to Theorem 1 in the context of majority vote classification, with stronger assumptions on
the relevant distributions and on the form of the voting scheme. In Figure 2, we plot the average error
(plus/minus two standard deviations) of the random projection ensemble classifier in one numerical
example, as we vary B1 ∈ {2, . . . , 500}; this reveals that the Monte Carlo error stabilises rapidly, in
agreement with what Lopes (2016) observed for a random forest classifier.

Our next result controls the test excess risk, i.e. the difference between the expected test error
and the Bayes risk, of the random projection classifier in terms of the expected test excess risk of the
classifier based on a single random projection. An attractive feature of this result is its generality:
no assumptions are placed on the configuration of the training data Tn, the distribution P of the test
point (X,Y ) or on the distribution of the individual projections.

Theorem 2. For each B1 ∈ N ∪ {∞}, we have

E{R(CRP
n )} −R(CBayes) ≤ 1

min(α, 1 − α)

[
E{R(CA1

n )} −R(CBayes)
]
. (4)

§In order to distinguish between different sources of randomness, we will write P and E for the probability
and expectation, respectively, taken over the randomness from the projections A1, . . . ,AB1 . If the training data
is random, then we condition on Tn when computing P and E.
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Fig. 2. The average error (black) plus/minus two standard deviations (red) over 20 sets of B1B2 projections for
B1 ∈ {2, . . . , 500}. We use the LDA (left), QDA (middle) and knn (right) base classifiers. The plots show the
test error for one training dataset from Model 2; the other parameters are n = 50, p = 100, d = 5 and B2 = 50.

When B1 = ∞, we interpret R(CRP
n ) in Theorem 2 as R(CRP∗

n ). In fact, when B1 = ∞ and Gn,0 and
Gn,1 are continuous, the bound in Theorem 2 can be improved if one is using an ‘oracle’ choice of the
voting threshold α, namely

α∗ ∈ argmin
α′∈[0,1]

R(CRP∗

n,α′ ) = argmin
α′∈[0,1]

[
π1Gn,1(α

′) + π0{1−Gn,0(α
′)}
]
, (5)

where we write CRP∗

n,α to emphasise the dependence on the voting threshold α. In this case, by definition
of α∗ and then applying Theorem 2,

R(CRP∗

n,α∗)−R(CBayes) ≤ R(CRP∗

n,1/2)−R(CBayes) ≤ 2
[
E{R(CA1

n )} −R(CBayes)
]
, (6)

which improves the bound in (4) since 2 ≤ 1
min{α∗,(1−α∗)} . It is also worth mentioning that if assump-

tion 1 holds at α∗ ∈ (0, 1), and Gn,0 and Gn,1 are continuous, then π1gn,1(α
∗) = π0gn,0(α

∗) and the
constant in Theorem 1 simplifies to

γn(α
∗) =

α∗(1− α∗)
2

{π1ġn,1(α∗)− π0ġn,0(α
∗)} ≥ 0.

3. Choosing good random projections

In this section, we study a special case of the generic random projection ensemble classifier introduced
in Section 2, where we propose a screening method for choosing the random projections. Let RA

n be
an estimator of R(CA

n ), based on {(zA1 , yA1 ), . . . , (zAn , yAn )}, that takes values in the set {0, 1/n, . . . , 1}.
Examples of such estimators include the training error and leave-one-out estimator; we discuss these
choices in greater detail in Section 4. For B1, B2 ∈ N, let {Ab1,b2 : b1 = 1, . . . , B1, b2 = 1, . . . , B2}
denote independent projections, independent of (X,Y ), distributed according to Haar measure on A.
One way to simulate from Haar measure on the set A is to first generate a matrix Q ∈ R

d×p, where
each entry is drawn independently from a standard normal distribution, and then take AT to be the
matrix of left singular vectors in the singular value decomposition of QT (see, for example, Chikuse,
2003, Theorem 1.5.4). For b1 = 1, . . . , B1, let

b∗2(b1) := sargmin
b2∈{1,...,B2}

R
Ab1,b2
n , (7)

where sargmin denotes the smallest index where the minimum is attained in the case of a tie. We now
set Ab1 := Ab1,b∗2(b1)

, and consider the random projection ensemble classifier from Section 2 constructed
using the independent projections A1, . . . ,AB1

.
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Let
R∗

n := min
A∈A

RA
n

denote the optimal test error estimate over all projections. The minimum is attained here, since RA
n

takes only finitely many values. We assume the following:

Assumption 2. There exists β ∈ (0, 1] such that

P
(
RA1,1

n ≤ R∗
n + |ǫn|

)
≥ β,

where ǫn = ǫ
(B2)
n := E{R(CA1

n )−RA1
n }.

The quantity ǫn, which depends on B2 because A1 is selected from B2 independent random
projections, can be interpreted as a measure of overfitting. Assumption 2 asks that there is a positive

probability that R
A1,1

n is within |ǫn| of its minimum value R∗
n. The intuition here is that spending

more computational time choosing a projection by increasing B2 is potentially futile: one may find
a projection with a lower error estimate, but the chosen projection will not necessarily result in a
classifier with a lower test error. Under this condition, the following result controls the test excess risk
of our random projection ensemble classifier in terms of the test excess risk of a classifier based on
d-dimensional data, as well as a term that reflects our ability to estimate the test error of classifiers
based on projected data and a term that depends on the number of projections.

Theorem 3. Assume assumption 2. Then, for each B1, B2 ∈ N, and every A ∈ A,

E{R(CRP
n )} −R(CBayes) ≤ R(CA

n )−R(CBayes)

min(α, 1 − α)
+

2|ǫn| − ǫAn
min(α, 1 − α)

+
(1− β)B2

min(α, 1 − α)
, (8)

where ǫAn := R(CA
n )−RA

n .

Regarding the bound in Theorem 3 as a sum of three terms, we see that the final one can be seen
as the price we have to pay for the fact that we do not have access to an infinite sample of random
projections. This term can be made negligible by choosing B2 to be sufficiently large, though the value
of B2 required to ensure it is below a prescribed level may depend on the training data. It should
also be noted that ǫn in the second term may increase with B2, which reflects the fact mentioned
previously that this quantity is a measure of overfitting. The behaviour of the first two terms depends
on the choice of base classifier, and our aim is to show that under certain conditions, these terms can
be bounded (in expectation over the training data) by expressions that do not depend on p.

To this end, define the regression function on R
d induced by the projection A ∈ A to be ηA(z) :=

P(Y = 1|AX = z). The corresponding induced Bayes classifier, which is the optimal classifier knowing
only the distribution of (AX,Y ), is given by

CA−Bayes(z) :=

{
1 if ηA(z) ≥ 1/2;
0 otherwise.

In order to give a condition under which there exists a projection A ∈ A for which R(CA
n ) is close to

the Bayes risk, we will invoke an additional assumption on the form of the Bayes classifier:

Assumption 3. There exists a projection A∗ ∈ A such that

PX({x ∈ R
p : η(x) ≥ 1/2}△{x ∈ R

p : ηA
∗

(A∗x) ≥ 1/2}) = 0,

where B△C := (B ∩ Cc) ∪ (Bc ∩ C) denotes the symmetric difference of two sets B and C.

Assumption 3 requires that the set of points x ∈ R
p assigned by the Bayes classifier to class 1 can be

expressed as a function of a d-dimensional projection of x. Note that if the Bayes decision boundary
is a hyperplane, then assumption 3 holds with d = 1. Moreover, Proposition 1 below shows that, in
fact, assumption 3 holds under the sufficient dimension reduction condition, which states that Y is
conditionally independent of X given A∗X; see Cook (1998) for many statistical settings where such
an assumption is natural.
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Proposition 1. If Y is conditionally independent of X given A∗X, then assumption 3 holds.

The following result confirms that under assumption 3, and for a sensible choice of base classifier, we
can hope for R(CA∗

n ) to be close to the Bayes risk.

Proposition 2. Assume assumption 3. Then R(CA∗−Bayes) = R(CBayes).

We are therefore now in a position to study the first two terms in the bound in Theorem 3 in more
detail for specific choices of base classifier.

4. Possible choices of the base classifier

In this section, we change our previous perspective and regard the training data as independent
random pairs with distribution P , so our earlier statements are interpreted conditionally on Tn :=
{(X1, Y1), . . . , (Xn, Yn)}. For A ∈ A, we write our projected data as T A

n := {(ZA
1 , Y

A
1 ), . . . , (ZA

n , Y
A
n )},

where ZA
i := AXi and Y A

i := Yi. We also write P and E to refer to probabilities and expectations
over all random quantities. We consider particular choices of base classifier, and study the first two
terms in the bound in Theorem 3.

4.1. Linear Discriminant Analysis
Linear Discriminant Analysis (LDA), introduced by Fisher (1936), is arguably the simplest classifica-
tion technique. Recall that in the special case where X|Y = r ∼ Np(µr,Σ), we have

sgn{η(x) − 1/2} = sgn

{
log

π1
π0

+
(
x− µ1 + µ0

2

)T
Σ−1(µ1 − µ0)

}
,

so assumption 3 holds with d = 1 and A∗ = (µ1−µ0)TΣ−1

‖Σ−1(µ1−µ0)‖ , a 1 × p matrix. In LDA, πr, µr and Σ are

estimated by their sample versions, using a pooled estimate of Σ. Although LDA cannot be applied
directly when p ≥ n since the sample covariance matrix is singular, we can still use it as the base
classifier for a random projection ensemble, provided that d < n. Indeed, noting that for any A ∈ A,
we have AX|Y = r ∼ Nd(µ

A
r ,Σ

A), where µA
r := Aµr and ΣA := AΣAT , we can define

CA
n (x) = CA−LDA

n (x) :=

{
1 if log π̂1

π̂0
+
(
Ax− µ̂A

1 +µ̂A
0

2

)T
Ω̂A(µ̂A

1 − µ̂A
0 ) ≥ 0;

0 otherwise.
(9)

Here, π̂r := nr/n, where nr :=
∑n

i=1 1{Yi=r}, µ̂
A
r := n−1

r

∑n
i=1 AXi1{Yi=r},

Σ̂A :=
1

n− 2

n∑

i=1

1∑

r=0

(AXi − µ̂A
r )(AXi − µ̂A

r )
T
1{Yi=r}

and Ω̂A := (Σ̂A)−1.
Write Φ for the standard normal distribution function. Under the normal model specified above,

the test error of the LDA classifier can be written as

R(CA
n ) = π0Φ

(
log π̂1

π̂0
+ (δ̂A)T Ω̂A(¯̂µA − µA

0 )√
(δ̂A)T Ω̂AΣAΩ̂Aδ̂A

)
+ π1Φ

(
log π̂0

π̂1
− (δ̂A)T Ω̂A(¯̂µA − µA

1 )√
(δ̂A)T Ω̂AΣAΩ̂Aδ̂A

)
,

where δ̂A := µ̂A
0 − µ̂A

1 and ¯̂µA := (µ̂A
0 + µ̂A

1 )/2.
Efron (1975) studied the excess risk of the LDA classifier in an asymptotic regime in which d is

fixed as n diverges. Specialising his results for simplicity to the case where π0 = π1, he showed that
using the LDA classifier (9) with A = A∗ yields

E{R(CA∗

n )} −R(CBayes) =
d

n
φ
(
−∆

2

)(∆

4
+

1

∆

)
{1 + o(1)} (10)
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as n → ∞, where ∆ := ‖Σ−1/2(µ0 − µ1)‖ = ‖(ΣA∗

)−1/2(µA∗

0 − µA∗

1 )‖.
It remains to control the errors ǫn and ǫA

∗

n in Theorem 3. For the LDA classifier, we consider the
training error estimator

RA
n :=

1

n

n∑

i=1

1{CA−LDA
n (Xi)6=Yi}. (11)

Devroye and Wagner (1976) provided a Vapnik–Chervonenkis bound for RA
n under no assumptions on

the underlying data generating mechanism: for every n ∈ N and ǫ > 0,

sup
A∈A

P{|R(CA
n )−RA

n | > ǫ} ≤ 8(n+ 1)d+1e−nǫ2/32; (12)

see also Devroye et al. (1996, Theorem 23.1). We can then conclude that

E|ǫA∗

n | ≤ E
∣∣R(CA∗

n )−RA∗

n

∣∣ ≤ inf
ǫ0∈(0,1)

ǫ0 + 8(n+ 1)d+1

∫ 1

ǫ0

e−ns2/32 ds

≤ 8

√
(d+ 1) log(n+ 1) + 3 log 2 + 1

2n
. (13)

The more difficult term to deal with is

E|ǫn| = E
∣∣E{R(CA1

n )−RA1

n }
∣∣ ≤ E

∣∣R(CA1

n )−RA1

n

∣∣.
In this case, the bound (12) cannot be applied directly, because (X1, Y1), . . . , (Xn, Yn) are no longer
independent conditional on A1; indeed A1 = A1,b∗2(1)

is selected from A1,1, . . . ,A1,B2
so as to minimise

an estimate of test error, which depends on the training data. Nevertheless, since A1,1, . . . ,A1,B2
are

independent of Tn, we still have that

P

{
max

b2=1,...,B2

|R(C
A1,b2
n )−R

A1,b2
n | > ǫ

∣∣∣ A1,1, . . . ,A1,B2

}
≤

B2∑

b2=1

P
{
|R(C

A1,b2
n )−R

A1,b2
n | > ǫ

∣∣ A1,b2

}

≤ 8(n+ 1)d+1B2e
−nǫ2/32.

We can therefore conclude by almost the same argument as that leading to (13) that

E|ǫn| ≤ E

{
max

b2=1,...,B2

∣∣R(C
A1,b2
n )−R

A1,b2
n

∣∣
}

≤ 8

√
(d+ 1) log(n+ 1) + 3 log 2 + logB2 + 1

2n
. (14)

Note that none of the bounds (10), (13) and (14) depend on the original data dimension p. More-
over, (14), together with Theorem 3, reveals a trade-off in the choice of B2 when using LDA as the
base classifier. Choosing B2 to be large gives us a good chance of finding a projection with a small
estimate of test error, but we may incur a small overfitting penalty as reflected by (14).

Finally, we remark that an alternative method of fitting linear classifiers is via empirical risk
minimisation. In this context, Durrant and Kabán (2013, Theorem 3.1) give high probability bounds
on the test error of a linear empirical risk minimisation classifier based on a single random projection,
where the bounds depend on what those authors refer to as the ‘flipping probability’, namely the
probability that the class assignment of a point based on the projected data differs from the assignment
in the ambient space. In principle, these bounds could be combined with our Theorem 2, though the
resulting expressions would depend on probabilistic bounds on flipping probabilities.

4.2. Quadratic Discriminant Analysis
Quadratic Discriminant Analysis (QDA) is designed to handle situations where the class-conditional
covariance matrices are unequal. Recall that when X|Y = r ∼ Np(µr,Σr), and πr = P(Y = r), for
r = 0, 1, the Bayes decision boundary is given by {x ∈ R

p : ∆(x;π0, µ0, µ1,Σ0,Σ1) = 0}, where

∆(x;π0, µ0, µ1,Σ0,Σ1) := log
π1
π0

− 1

2
log
(detΣ1

detΣ0

)
− 1

2
xT (Σ−1

1 − Σ−1
0 )x

+ xT (Σ−1
1 µ1 −Σ−1

0 µ0)−
1

2
µT
1Σ

−1
1 µ1 +

1

2
µT
0 Σ

−1
0 µ0.
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In QDA, πr, µr and Σr are estimated by their sample versions. If p ≥ min(n0, n1), where we recall
that nr :=

∑n
i=1 1{Yi=r}, then at least one of the sample covariance matrix estimates is singular, and

QDA cannot be used directly. Nevertheless, we can still choose d < min(n0, n1) and use QDA as the
base classifier in a random projection ensemble. Specifically, we can set

CA
n (x) = CA−QDA

n (x) :=

{
1 if ∆(x; π̂0, µ̂

A
0 , µ̂

A
1 , Σ̂

A
0 , Σ̂

A
1 ) ≥ 0;

0 otherwise,

where π̂r and µ̂A
r were defined in Section 4.1, and where

Σ̂A
r :=

1

nr − 1

∑

{i:Y A
i =r}

(AXi − µ̂A
r )(AXi − µ̂A

r )
T

for r = 0, 1. Unfortunately, analogous theory to that presented in Section 4.1 does not appear to exist
for the QDA classifier; unlike for LDA, the risk does not have a closed form (note that Σ1 − Σ0 is
non-definite in general). Nevertheless, we found in our simulations presented in Section 6 that the
QDA random projection ensemble classifier can perform very well in practice. In this case, we estimate
the test errors using the leave-one-out method given by

RA
n :=

1

n

n∑

i=1

1{CA
n,i(Xi)6=Yi}, (15)

where CA
n,i denotes the classifier CA

n , trained without the ith pair, i.e. based on T A
n \ {ZA

i , Y
A
i }. For a

method like QDA that involves estimating more parameters than LDA, we found that the leave-one-out
estimator was less susceptible to overfitting than the training error estimator.

4.3. The k-nearest neighbour classifier

The k-nearest neighbour classifier (knn), first proposed by Fix and Hodges (1951), is a nonparametric
method that classifies the test point x ∈ R

p according to a majority vote over the classes of the k
nearest training data points to x. The enormous popularity of the knn classifier can be attributed
partly due to its simplicity and intuitive appeal; however, it also has the attractive property of being
universally consistent: for every fixed distribution P , as long as k → ∞ and k/n → 0, the risk of the
knn classifier converges to the Bayes risk (Devroye et al., 1996, Theorem 6.4).

Hall, Park and Samworth (2008) studied the rate of convergence of the excess risk of the k-nearest
neighbour classifier under regularity conditions that require, inter alia, that p is fixed and that the class-
conditional densities have two continuous derivatives in a neighbourhood of the (p − 1)-dimensional
manifold on which they cross. In such settings, the optimal choice of k, in terms of minimising the
excess risk, isO(n4/(p+4)), and the rate of convergence of the excess risk with this choice is O(n−4/(p+4)).
Thus, in common with other nonparametric methods, there is a ‘curse of dimensionality’ effect that
means the classifier typically performs poorly in high dimensions. Samworth (2012) found the optimal
way of assigning decreasing weights to increasingly distant neighbours, and quantified the asymptotic
improvement in risk over the unweighted version, but the rate of convergence remains the same.

We can use the knn classifier as the base classifier for a random projection ensemble as follows:
given z ∈ R

d, let (ZA
(1), Y

A
(1)), . . . , (Z

A
(n), Y

A
(n)) be a re-ordering of the training data such that ‖ZA

(1)−z‖ ≤
. . . ≤ ‖ZA

(n) − z‖, with ties split at random. Now define

CA
n (x) = CA−knn

n (x) :=

{
1 if SA

n (Ax) ≥ 1/2;
0 otherwise,

where SA
n (z) := k−1

∑k
i=1 1{Y A

(i)=1}. The theory described in the previous paragraph can be applied

to show that, under regularity conditions, E{R(CA∗

n )} −R(CBayes) = O(n−4/(d+4)).
Once again, a natural estimate of the test error in this case is the leave-one-out estimator defined

in (15), where we use the same value of k on the leave-one-out datasets as for the base classifier, and
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where distance ties are split in the same way as for the base classifier. For this estimator, Devroye
and Wagner (1979, Theorem 4) showed that for every n ∈ N,

sup
A∈A

E[{R(CA
n )−RA

n }2] ≤
1

n
+

24k1/2

n
√
2π

;

see also Devroye et al. (1996, Chapter 24). It follows that

E|ǫA∗

n | ≤
( 1
n
+

24k1/2

n
√
2π

)1/2
≤ 1

n1/2
+

25/4
√
3k1/4

n1/2π1/4
.

In fact, Devroye and Wagner (1979, Theorem 1) also provided a tail bound analogous to (12) for the
leave-one-out estimator: for every n ∈ N and ǫ > 0,

sup
A∈A

P{|R(CA
n )−RA

n | > ǫ} ≤ 2 exp
(
−nǫ2

18

)
+ 6exp

(
− nǫ3

108k(3d + 1)

)
≤ 8 exp

(
− nǫ3

108k(3d + 1)

)
.

Arguing very similarly to Section 4.1, we can deduce that under no conditions on the data generating

mechanism, and choosing ǫ0 :=
{108k(3d+1)

n log(8B2)
}1/3

,

E|ǫn| =
∫ 1

0
P

{
max

b2=1,...,B2

|R(C
A1,b2
n )−R

A1,b2
n | > ǫ

}
dǫ

≤ ǫ0 + 8B2

∫ ∞

ǫ0

exp
(
− nǫ3

108k(3d + 1)

)
dǫ ≤ 3{4(3d + 1)}1/3

{
k(1 + logB2 + 3 log 2)

n

}1/3

.

We have therefore again bounded the expectations of the first two terms on the right-hand side of (8)
by quantities that do not depend on p.

4.4. A general strategy using sample splitting
In Sections 4.1, 4.2 and 4.3, we focused on specific choices of the base classifier to derive bounds on
the expected values of the first two terms in the bound in Theorem 3. The aim of this section, on
the other hand, is to provide similar guarantees that can be applied for any choice of base classifier
in conjunction with a sample splitting strategy. The idea is to split the sample Tn into Tn,1 and Tn,2,
say, where |Tn,1| =: n(1) and |Tn,2| =: n(2). To estimate the test error of CA

n(1) , the projected data base

classifier trained on T A
n,1 := {(ZA

i , Y
A
i ) : (Xi, Yi) ∈ Tn,1}, we use

RA
n(1),n(2) :=

1

n(2)

∑

(Xi,Yi)∈Tn,2

1{CA

n(1) (Xi)6=Yi};

in other words, we construct the classifier based on the projected data from Tn,1, and count the
proportion of points in Tn,2 that are misclassified. Similar to our previous approach, for the b1th
group of projections, we then select a projection Ab1 that minimises this estimate of test error, and
construct the random projection ensemble classifier CRP

n(1),n(2) from

νn(1)(x) :=
1

B1

B1∑

b1=1

1{C
Ab1

n(1) (x)=1}.

Writing R∗
n(1),n(2) := minA∈ARA

n(1),n(2) , we introduce the following assumption analogous to assump-
tion 2:

Assumption 2’. There exists β ∈ (0, 1] such that

P
(
R

A1,1

n(1),n(2) ≤ R∗
n(1),n(2) + |ǫn(1),n(2) |

)
≥ β,

where ǫn(1),n(2) := E{R(CA1

n(1))−RA1

n(1),n(2)}.
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The following bound for the random projection ensemble classifier with sample splitting is then im-
mediate from Theorem 3 and Proposition 2.

Corollary 1. Assume assumptions 2’ and 3. Then, for each B1, B2 ∈ N,

E{R(CRP
n(1),n(2))} −R(CBayes) ≤ R(CA∗

n(1))−R(CA∗−Bayes)

min(α, 1 − α)
+

2|ǫn(1),n(2) | − ǫA
∗

n(1),n(2)

min(α, 1 − α)
+

(1− β)B2

min(α, 1 − α)
,

where ǫA
∗

n(1),n(2) := R(CA∗

n(1))−RA∗

n(1),n(2) .

The main advantage of this approach is that, since Tn,1 and Tn,2 are independent, we can apply
Hoeffding’s inequality to deduce that

sup
A∈A

P
{
|R(CA

n(1))−RA
n(1),n(2) | ≥ ǫ

∣∣ Tn,1
}
≤ 2e−2n(2)ǫ2 .

It then follows by very similar arguments to those given in Section 4.1 that

E(|ǫA∗

n(1),n(2) |
∣∣ Tn,1) = E

{
|R(CA∗

n(1))−RA∗

n(1),n(2) |
∣∣ Tn,1

}
≤
(1 + log 2

2n(2)

)1/2
,

E(|ǫn(1),n(2) |
∣∣ Tn,1) = E

{
|R(CA1

n(1))−RA1

n(1),n(2) |
∣∣ Tn,1

}
≤
(1 + log 2 + logB2

2n(2)

)1/2
. (16)

These bounds hold for any choice of base classifier (and still without any assumptions on the data
generating mechanism); moreover, since the bounds on the terms in (16) merely rely on Hoeffding’s
inequality as opposed to Vapnik–Chervonenkis theory, they are typically sharper. The disadvantage
is that the first term in the bound in Corollary 1 will typically be larger than the corresponding term
in Theorem 3 due to the reduced effective sample size.

5. Practical considerations

5.1. Computational complexity

The random projection ensemble classifier aggregates the results of applying a base classifier to many
random projections of the data. Thus we need to compute the training error (or leave-one-out error)
of the base classifier after applying each of the B1B2 projections. The test point is then classified
using the B1 projections that yield the minimum error estimate within each block of size B2.

Generating a random projection from Haar measure involves computing the left singular vectors
of a p× d matrix, which requires O(pd2) operations (Trefethen and Bau, 1997, Lecture 31). However,
if computational cost is a concern, one may simply generate a matrix with pd independent N(0, 1/p)
entries. If p is large, such a matrix will be approximately orthonormal with high probability. In fact,
when the base classifier is affine invariant (as is the case for LDA and QDA), this will give the same
results as using Haar projections, in which case one can forgo the orthonormalisation step altogether
when generating the random projections. Even in very high-dimensional settings, multiplication by a
random Gaussian matrix can be approximated in a computationally efficient manner (e.g. Le, Sarlos
and Smola, 2013). Once a projection is generated, we need to map the training data to the lower
dimensional space, which requires O(npd) operations. We then classify the training data using the
base classifier. The cost of this step, denoted Ttrain, depends on the choice of the base classifier; for
LDA and QDA it is O(nd2), while for knn it is O(n2d). Finally the test points are classified using the
chosen projections; this cost, denoted Ttest, also depends on the choice of base classifier. For LDA,
QDA and knn it is O(ntestd), O(ntestd

2) and O((n+ ntest)
2d), respectively, where ntest is the number

of test points. Overall we therefore have a cost of O(B1{B2(npd+Ttrain)+ntestpd+Ttest}) operations.
An appealing aspect of the proposal studied here is the scope to incorporate parallel computing.

We can simultaneously compute the projected data base classifier for each of the B1B2 projections. In
the supplementary material we present the running times of the random projection ensemble classifier
and the other methods considered in the empirical comparison in Section 6.
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5.2. Choice of α

We now discuss the choice of the voting threshold α. In (5), at the end of Section 2, we defined the
oracle choice α∗, which minimises the test error of the infinite-simulation random projection classifier.
Of course, α∗ cannot be used directly, because we do not know Gn,0 and Gn,1 (and we may not know
π0 and π1 either). Nevertheless, for the LDA base classifier we can estimate Gn,r using

Ĝn,r(t) :=
1

nr

∑

{i:Yi=r}
1{νn(Xi)<t}

for r = 0, 1. For the QDA and k-nearest neighbour base classifiers, we use the leave-one-out-
based estimate ν̃n(Xi) := B−1

1

∑B1

b1=1 1{C
Ab1
n,i (Xi)=1} in place of νn(Xi). We also estimate πr by

π̂r := n−1
∑n

i=1 1{Yi=r}, and then set the cut-off in (2) as

α̂ ∈ argmin
α′∈[0,1]

[
π̂1Ĝn,1(α

′) + π̂0{1− Ĝn,0(α
′)}
]
. (17)

Since empirical distribution functions are piecewise constant, the objective function in (17) does not
have a unique minimum, so we choose α̂ to be the average of the smallest and largest minimisers. An
attractive feature of the method is that {νn(Xi) : i = 1, . . . , n} (or {ν̃n(Xi) : i = 1, . . . , n} in the case

of QDA and knn) are already calculated in order to choose the projections, so calculating Ĝn,0 and

Ĝn,1 carries negligible extra computational cost.

Figure 3 illustrates π̂1Ĝn,1(α
′)+ π̂0{1−Ĝn,0(α

′)} as an estimator of π1Gn,1(α
′)+π0{1−Gn,0(α

′)},
for the QDA base classifier and for different values of n and π1. Here, a very good approximation to the
estimand was obtained using an independent data set of size 5000. Unsurprisingly, the performance of
the estimator improves as n increases, but the most notable feature of these plots is the fact that for all
classifiers and even for small sample sizes, α̂ is an excellent estimator of α∗, and may be a substantial
improvement on the naive choice α̂ = 1/2 (or the appropriate prior weighted choice), which may result
in a classifier that assigns every point to a single class.
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Fig. 3. π1Gn,1(α
′) + π0{1 − Gn,0(α

′)} in (5) (black) and π̂1Ĝn,1(α
′) + π̂0{1 − Ĝn,0(α

′)} (red) for the QDA
base classifier after projecting for one training data set of size n = 50 (left), 200 (middle) and 1000 (right) from
Model 3 with π1 = 0.5 (top) and π1 = 0.66 (bottom). Here, p = 100 and d = 2.
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5.3. Choice of B1 and B2

In order to minimise the Monte Carlo error as described in Theorem 1 and Proposition 4, we should
choose B1 to be as large as possible. The constraint, of course, is that the computational cost of the
random projection classifier scales linearly with B1. The choice of B2 is more subtle; while the third
term in the bound in Theorem 3 decreases as B2 increases, we saw in Section 4 that upper bounds on
E|ǫn| may increase with B2. In principle, we could try to use the expressions given in Theorem 3 and
Section 4 to choose B2 to minimise the overall upper bound on E{R(CRP

n )} −R(CBayes). In practice,
however, we found that an involved approach such as this was unnecessary, and that the ensemble
method was robust to the choice of B1 and B2; see Section 11 of the supplementary material for
numerical evidence and further discussion. Based on this numerical work, we recommend B1 = 500
and B2 = 50 as sensible default choices, and indeed these values were used in all of our experiments
in Section 6 as well as Section 12 in the supplementary material.

5.4. Choice of d
We want to choose d as small as possible in order to obtain the best possible performance bounds as
described in Section 4 above. This also reduces the computational cost. However, the performance
bounds rely on assumption 3, whose strength decreases as d increases, so we want to choose d large
enough that this condition holds (at least approximately).

In Section 6 we see that the random projection ensemble method is quite robust to the choice
of d. Nevertheless, in some circumstances it may be desirable to have an automatic choice, and
cross-validation provides one possible approach when computational cost at training time is not too
constrained. Thus, if we wish to choose d from a set D ⊆ {1, . . . , p}, then for each d ∈ D, we train the
random projection ensemble classifier, and set

d̂ := sargmin
d∈D

[
π̂1Ĝn,1(α̂) + π̂0{1− Ĝn,0(α̂)}

]
,

where α̂ = α̂d is given in (17). Such a proceedure does not add to the computational cost at test time.
This strategy is most appropriate when max{d : d ∈ D} is not too large (which is the setting we have
in mind); otherwise a penalised risk approach may be more suitable.

6. Empirical analysis

In this section, we assess the empirical performance of the random projection ensemble classifier in
simulated and real data experiments. We will write RP-LDAd, RP-QDAd and RP-knnd to denote the
random projection classifier with LDA, QDA, and knn base classifiers, respectively; the subscript d
refers to the dimension of the image space of the projections.

For comparison we present the corresponding results of applying, where possible, the three base
classifiers (LDA, QDA, knn) in the original p-dimensional space alongside 11 other classification meth-
ods chosen to represent the state of the art. These include Random Forests (RF) (Breiman, 2001); Sup-
port Vector Machines (SVM) (Cortes and Vapnik, 1995); Gaussian Process (GP) classifiers (Williams
and Barber, 1998); and three methods designed for high-dimensional classification problems, namely
Penalized LDA (PenLDA) (Witten and Tibshirani, 2011), Nearest Shrunken Centroids (NSC) (Tib-
shirani et al., 2003), and ℓ1-penalised logistic regression (PenLog) (Goeman et al., 2015).

A further comparison is with LDA and knn applied after a single projection chosen based on
the sufficient dimension reduction assumption (SDR5). For this method, we project the data into 5
dimensions using the proposal of Shin et al. (2014). This method requires n > p. Finally, we compare
with two related ensemble methods: optimal tree ensembles (OTE) (Khan et al., 2015a) and ensemble
of subset of k-nearest neighbour classifiers (ESknn) (Gul et al., 2016).

Many of these methods require tuning parameter selection, and the parameters were chosen
as follows: for the standard knn classifier, we chose k via leave-one-out cross validation from the
set {3, 5, 7, 9, 11}. The Random Forest was implemented using the randomForest package (Liaw and
Wiener, 2014); we used an ensemble of 1000 trees, with ⌊√p⌋ (the default setting in the randomForest
package) components randomly selected when training each tree. For the Radial SVM, we used the
reproducing basis kernelK(u, v) := exp(−1

p‖u−v‖2). Both SVM classifiers were implemented using the
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svm function in the e1071 package (Meyer et al., 2015). The GP classifier uses a radial basis function,
with the hyperparameter chosen via the automatic method in the gausspr function in the kernlab

package (Karatzoglou, Smola and Hornik, 2015). The tuning parameters for the other methods were
chosen using the default settings in the corresponding R packages PenLDA (Witten, 2011), NSC (Hastie
et al., 2015) and penalized (Goeman et al., 2015) namely 6-fold, 10-fold and 5-fold cross validation,
respectively. For the OTE and ESknn methods we used the default settings in the R packages OTE

(Khan et al., 2015b) and ESKNN (Gul et al., 2015).

6.1. Simulated examples
We present four different simulation settings chosen to investigate the performance of the random
projection ensemble classifier in a wide variety of scenarios. In each of the examples below, we take
n ∈ {50, 200, 1000}, p ∈ {100, 1000} and investigate two different values of the prior probability. We
use Gaussian projections (cf. Section 5.1) and set B1 = 500 and B2 = 50 (cf. Section 5.3).

The risk estimates and standard errors for the p = 100 and π1 = 0.5 case are shown in Ta-
bles 1 and 2 (the remaining results are given in the supplementary material). These were calculated
as follows: We set ntest = 1000, Nreps = 100, and for l = 1, . . . , Nreps we generate a training set of

size n and a test set of size ntest from the same distribution. Let R̂l be the proportion of the test set
that is classified incorrectly in the lth repeat of the experiment. The overall risk estimate presented

is R̂isk := 1
Nreps

∑Nreps

l=1 R̂l. Note that

E{R̂isk} = E{R(CRP
n )}

and

Var(R̂isk) =
1

Nreps
Var(R̂1)

=
1

Nreps

[
E

{
E{R(CRP

n )}[1 −E{R(CRP
n )}]

ntest

}
+Var

[
E{R(CRP

n )}
]]
.

We therefore estimate the standard error in the tables below by

σ̂ :=
1

N
1/2
reps

{
R̂isk(1− R̂isk)

ntest
+

ntest − 1

ntestNreps

Nreps∑

l=1

(R̂l − R̂isk)2
}1/2

.

The method with the smallest risk estimate in each column of the tables below is highlighted in bold;
where applicable, we also highlight any method with a risk estimate within one standard error of the
minimum.

6.1.1. Sparse class boundaries

Model 1: Here, X|{Y = 0} ∼ 1
2Np(µ0,Σ)+

1
2Np(−µ0,Σ), andX|{Y = 1} ∼ 1

2Np(µ1,Σ)+
1
2Np(−µ1,Σ),

where, for p = 100, we set Σ = I100×100, µ0 = (2,−2, 0, . . . , 0)T and µ1 = (2, 2, 0, . . . , 0)T .
In Model 1, assumption 3 holds with d = 2; for example, we could take the rows of A∗ to be the

first two Euclidean basis vectors. We see that the RP ensemble classifier with the QDA base classifier
performs very well here, as does the OTE method. Despite the fact that the regression function η only
depends on the first two components in this example, the comparators designed for sparse problems
do not perform well; in some cases they are no better than a random guess.

6.1.2. Rotated Sparse Normal

Model 2: Here, X|{Y = 0} ∼ Np(Ωpµ0,ΩpΣ0Ω
T
p ), and X|{Y = 1} ∼ Np(Ωpµ1,ΩpΣ1Ω

T
p ), where Ωp

is a p × p rotation matrix that was sampled once according to Haar measure, and remained fixed
thereafter, and we set µ0 = (3, 3, 3, 0, . . . , 0)T and µ1 = (0, . . . , 0)T . Moreover, Σ0 and Σ1 are block

diagonal, with blocks Σ
(1)
r , and Σ

(2)
r , for r = 0, 1, where Σ

(1)
0 is a 3 × 3 matrix with diagonal entries
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Table 1. Misclassification rates for Models 1 and 2, with p = 100 and π1 = 0.5.

Model 1, Bayes risk = 4.45 Model 2, Bayes risk = 4.09
n 50 200 1000 50 200 1000

RP-LDA2 49.340.26 48.100.31 44.140.46 8.340.28 5.560.12 5.170.10

RP-LDA5 49.810.24 48.860.30 46.910.40 8.170.27 5.640.13 5.140.10

RP-QDA2 44.180.29 29.380.49 10.570.22 8.400.29 5.570.12 5.160.10

RP-QDA5 39.320.33 22.320.32 8.750.15 8.060.25 5.580.12 5.090.10

RP-knn2 46.100.30 36.180.32 19.420.20 8.940.36 5.600.12 5.200.10
RP-knn5 43.650.30 25.340.35 10.210.16 9.000.33 5.680.12 5.130.10

LDA N/A 49.600.23 49.910.22 N/A 14.320.22 6.340.11
QDA N/A N/A 27.360.23 N/A N/A 17.100.20
knn 34.660.35 23.710.31 15.310.17 12.810.28 8.800.15 7.280.13
RF 49.720.23 48.330.25 43.280.43 11.110.31 6.800.12 6.070.11
Radial SVM 49.830.22 50.160.22 48.670.22 24.041.47 6.370.14 5.460.10
Linear SVM 50.020.23 49.550.21 50.040.22 9.410.21 8.960.17 7.760.13
Radial GP 48.180.30 42.760.29 26.600.24 14.090.63 5.840.13 5.090.10

PenLDA 49.950.23 49.790.23 50.050.22 11.110.55 6.720.20 5.790.12
NSC 49.740.23 49.690.26 49.550.24 12.610.61 7.270.28 5.820.13
PenLog 49.660.35 49.880.24 50.120.21 11.370.22 7.670.14 6.000.11
SDR5-LDA N/A 37.800.48 35.310.30 N/A 15.070.22 6.470.11
SDR5-knn N/A 32.220.71 21.831.08 N/A 18.810.29 7.750.12
OTE 48.510.33 34.731.23 9.570.66 18.260.47 12.440.26 9.240.15
ESknn 50.130.23 49.870.22 49.770.21 40.300.71 37.060.63 32.980.58

equal to 2 and off-diagonal entries equal to 1/2, and Σ
(1)
1 = Σ

(1)
0 − I3×3. In both classes Σ

(2)
r is a

(p − 3)× (p− 3) matrix, with diagonal entries equal to 1 and off-diagonal entries equal to 1/2.
In Model 2, assumption 3 holds with d = 3; for instance, A∗ can be taken to be the first three

rows of ΩT
p . Perhaps surprisingly, whether we use too small a value of d (namely d = 2), or one that

is too large (d = 5), the RP ensemble methods still classify very well.

6.1.3. Independent features

Model 3: Here, P0 = Np(µ, Ip×p), with µ = 1√
p(1, . . . , 1, 0, . . . , 0)

T , where µ has p/2 non-zero com-

ponents, while P1 is the distribution of p independent components, each with a standard Laplace
distribution.

In Model 3, the class boundaries are non-linear and, in fact, assumption 3 is not satisfied for any
d < p. Nevertheless, in Table 2, we see that where the LDA, QDA and knn classifiers are tractable,
they are outperformed by their random projection ensemble counterparts, and in fact the RP-QDA5

classifier has the smallest misclassification rate among all methods implemented. Unsurprisingly,
the methods that are designed for a linear Bayes decision boundary are not effective. The RP-QDA
classifiers are especially accurate here; in particular, they are able to cope better with the non-linearity
of the class boundaries than the RP-LDA classifiers.

6.1.4. t-distributed features

Model 4: Here, X|{Y = r} = µr +
Zr√
Ur/νr

, where Zr ∼ Np(0,Σr) independent of Ur ∼ χ2
νr
, for

r = 0, 1. That is, Pr is the multivariate t-distribution centred at µr, with νr degrees of freedom and
shape parameter Σr. We set µ0 = (1, . . . , 1, 0, . . . , 0)T , where µ0 has 10 non-zero components, µ1 = 0,
ν0 = 2, ν1 = 1, Σ0 = (Σj,k), where Σj,j = 1, Σj,k = 0.5 if max(j, k) ≤ 10 and j 6= k, Σj,k = 0 otherwise,
and Σ1 = Ip×p.

Model 4 explores the effect of heavy tails and the presence of correlation between the features.
Again, assumption 3 is not satisfied for any d < p. The RF, OTE and RP-knn methods all perform
very well here. The RP-LDA and RP-QDA classifiers are less good. This is partly due the fact that
the class-conditional distributions do not have finite second and first moments, respectively, and, as a
result, the class mean and covariance matrix estimates are poor.
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Table 2. Misclassification rates for Models 3 and 4, with p = 100 and π1 = 0.5.

Model 3, Bayes risk = 1.01 Model 4, Bayes risk = 12.68
n 50 200 1000 50 200 1000

RP-LDA2 45.111.03 44.050.98 39.220.89 38.060.71 38.450.92 40.480.84
RP-LDA5 45.580.60 44.460.58 41.080.56 34.840.63 32.430.75 35.090.89
RP-QDA2 11.410.62 4.830.15 3.850.09 42.120.47 41.990.28 42.370.21
RP-QDA5 9.710.52 4.230.14 3.290.08 42.130.35 42.040.27 42.590.21
RP-knn2 20.690.84 6.860.27 4.730.11 30.850.49 24.070.31 20.760.19
RP-knn5 21.300.54 6.910.18 3.780.10 29.850.46 24.020.30 20.810.21
LDA N/A 46.220.25 41.740.24 N/A 37.340.29 31.040.26
QDA N/A N/A 15.300.21 N/A N/A 40.900.21
knn 49.920.24 49.810.22 49.670.22 37.490.63 30.140.34 27.580.25
RF 44.790.34 23.380.30 7.720.16 30.970.60 20.460.21 18.690.17

Radial SVM 39.341.47 4.650.13 3.430.09 47.720.40 45.460.51 43.700.72
Linear SVM 46.570.26 46.170.24 41.670.26 36.790.57 34.210.56 31.870.71
Radial GP 48.870.31 45.470.37 36.180.27 38.390.84 26.630.44 22.770.20
PenLDA 46.040.26 44.480.26 41.710.23 45.640.44 45.220.53 45.390.47
NSC 47.470.33 45.990.34 42.310.30 46.340.58 44.690.69 45.720.65
PenLog 48.810.29 46.360.28 42.150.24 N/A N/A N/A
SDR5-LDA N/A 46.270.24 42.090.25 N/A 37.960.29 31.040.27
SDR5-knn N/A 46.140.27 36.280.24 N/A 39.700.32 29.310.26
OTE 46.740.28 30.620.33 11.430.19 32.240.51 23.370.28 19.590.19
ESknn 48.660.26 46.590.26 45.170.22 46.150.51 44.030.54 43.770.46

6.2. Real data examples

In this section, we compare the classifiers above on eight real datasets available from the UC Irvine
(UCI) Machine Learning Repository. In each example, we first subsample the data to form a training
set of size n, then use the remaining data (or, where available, take a subsample of size 1000 from
it) to form the test set. As with the simulated examples, we set B1 = 500, B2 = 50, used Gaussian
distributed projections, and each experiment was repeated 100 times. Where appropriate, the tuning
parameters were chosen via the methods described at the beginning of Section 6 for each of the 100
repeats of the experiment.

6.2.1. Eye state detection

The electroencephalogram eye state dataset (http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State)
consists of p = 14 EEG measurements on 14980 observations. The task is to use the EEG reading to
determine the state of the eye. There are 8256 observations for which the eye is open (class 0), and
6723 for which the eye is closed (class 1).

6.2.2. Ionosphere dataset

The Ionosphere dataset (http://archive.ics.uci.edu/ml/datasets/Ionosphere) consists of p =
32 high-frequency antenna measurements on 351 observations. Observations are classified as good
(class 0) or bad (class 1), depending on whether there is evidence for free electrons in the Ionosphere
or not. The class sizes are 225 (good) and 126 (bad).

6.2.3. Down’s syndrome diagnoses in mice

The Mice dataset (http://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression) con-
sists of 570 healthy mice (class 0) and 507 mice with Down’s syndrome (class 1). The task is to
diagnose Down’s syndrome based on p = 77 protein expression measurements.

http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
http://archive.ics.uci.edu/ml/datasets/Ionosphere
http://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
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Table 3. Misclassification rates for the Eye State and Ionosphere datasets

Eye State Ionosphere
n 50 200 1000 50 100 200

RP-LDA5 42.060.38 38.610.29 36.300.21 13.050.38 10.750.25 9.780.26
RP-QDA5 38.970.39 32.440.42 30.910.87 8.140.37 6.150.22 5.210.20

RP-knn5 39.370.39 26.910.27 13.540.19 13.050.46 7.430.25 5.430.19
LDA 42.380.40 39.150.30 36.910.23 23.720.40 18.270.28 15.580.31
QDA 39.910.35 29.240.40 29.761.07 N/A N/A 14.070.34
knn 41.700.40 29.180.27 14.450.16 21.810.73 18.050.46 16.400.35
RF 39.270.37 29.040.25 17.630.20 10.520.30 7.540.19 6.480.18
Radial SVM 46.330.49 38.710.46 31.030.68 27.671.15 12.850.91 6.670.22
Linear SVM 42.380.42 39.550.36 38.580.38 19.410.35 17.050.27 15.480.29
Radial GP 40.730.38 32.220.25 21.660.21 22.290.72 17.810.46 14.520.31
PenLDA 44.370.43 42.500.28 41.860.23 21.200.57 19.830.56 19.810.54
NSC 44.730.48 42.370.29 42.270.28 22.620.53 19.110.42 17.520.34
SDR5-LDA 42.820.40 39.250.29 36.920.23 25.780.52 18.980.30 15.630.30
SDR5-knn 42.430.38 34.130.32 25.310.25 30.610.74 17.530.45 10.120.30
OTE 40.100.38 29.920.28 18.730.20 14.380.41 9.800.27 7.330.23
ESknn 45.620.41 43.060.35 39.370.34 27.810.58 23.230.48 20.050.51

Table 4. Misclassification rates for the Mice and Hill-Valley datasets.

Mice Hill-Valley
n 200 500 1000 100 200 500

RP-LDA5 25.170.30 23.560.26 23.350.49 36.840.84 36.450.85 32.571.06

RP-QDA5 18.240.29 16.050.24 15.450.45 44.430.34 43.560.31 41.100.33
RP-knn5 11.240.29 2.240.10 0.550.09 49.080.24 47.270.26 36.390.29
LDA 6.460.14 3.380.10 2.170.17 N/A 37.290.48 34.370.36
knn 19.650.26 7.020.17 0.940.13 49.350.24 48.820.21 47.490.24
RF 7.940.22 2.410.11 0.510.08 48.320.23 47.230.21 44.110.25
Radial SVM 11.250.29 3.890.13 1.690.16 50.240.19 50.240.19 50.420.21
Linear SVM 6.360.14 3.640.10 2.510.17 48.560.22 47.030.23 44.840.28
Radial GP 21.220.30 13.780.24 8.660.34 48.330.22 47.240.21 45.110.22
PenLDA 26.100.36 24.070.26 23.910.46 49.590.22 49.730.21 49.550.22
NSC 30.300.36 28.060.29 28.470.51 49.870.21 49.910.20 49.920.22
OTE 11.830.32 6.260.18 3.260.23 48.330.23 47.180.22 44.200.24
ESknn 39.030.59 34.330.66 31.650.78 49.310.23 48.900.23 48.030.25

6.2.4. Hill-Valley identification

The Hill-Valley dataset (http://archive.ics.uci.edu/ml/datasets/Hill-Valley) consists of 1212
observations of a terrain, each one when plotted in sequence represents either a Hill (class 0, size 600)
or a Valley (class 1, size 612). The task is to classify the terrain based on a vector of dimension
p = 100.

6.2.5. Musk identification

The Musk dataset (http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29) consists
of 1016 musk (class 0) and 5581 non-musk (class 1) molecules. The task is to classify a molecule based
on p = 166 shape measurements.

6.2.6. Cardiac Arrhythmia diagnoses

The cardiac arrhythmia dataset (https://archive.ics.uci.edu/ml/datasets/Arrhythmia) has one
normal class of size 245, and 13 abnormal classes, which we combined to form a second class of size
206. We removed the nominal features and those with missing values, leaving p = 194 electrocardio-
gram (ECG) measurements. In this example, the PenLDA classifier is N/A due to the fact that some
features have within-class standard deviation equal to zero.

http://archive.ics.uci.edu/ml/datasets/Hill-Valley
http://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29
https://archive.ics.uci.edu/ml/datasets/Arrhythmia
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Table 5. Misclassification rates for the Musk and Cardiac Arrhythmia datasets.

Musk Arrhythmia
n 100 200 500 50 100 200

RP-LDA5 14.630.31 12.180.23 10.150.15 33.240.42 30.190.35 27.490.30
RP-QDA5 12.080.27 9.920.18 8.640.13 30.470.33 28.280.26 26.310.28
RP-knn5 11.810.27 9.650.21 8.040.15 33.490.40 30.180.33 27.090.31
LDA N/A 24.880.42 9.090.15 N/A N/A N/A
knn 14.680.28 11.750.22 8.200.15 40.640.33 38.940.33 35.760.36
RF 13.200.20 10.690.18 7.550.13 31.650.39 26.720.29 22.400.31

Radial SVM 15.250.15 15.210.15 15.000.17 48.390.49 47.240.46 46.850.43
Linear SVM 13.910.25 10.390.18 7.410.12 36.160.47 35.610.39 35.200.35
Radial GP 14.910.16 14.070.20 11.140.19 37.280.42 33.800.40 29.310.35
PenLDA 27.740.58 27.140.54 26.980.31 N/A N/A N/A
NSC 15.320.18 15.220.15 15.200.16 34.980.46 33.000.40 31.080.41
PenLog 14.480.28 11.850.21 N/A 34.920.42 30.480.34 26.120.27
SDR5-LDA N/A 25.120.43 9.080.15 N/A N/A N/A
SDR5-knn N/A 24.090.62 9.810.16 N/A N/A N/A
OTE 13.900.23 11.040.18 8.050.14 33.900.47 27.830.29 23.750.32
ESknn 19.550.42 18.090.30 16.070.24 45.860.43 45.620.48 43.410.43

Table 6. Misclassification rates for the Activity recognition and Gisette datasets.

Activity Recognition Gisette
n 50 200 1000 50 200 1000

RP-LDA5 0.180.02 0.100.01 0.010.00 15.750.41 10.580.17 9.390.15
RP-QDA5 0.150.02 0.090.01 0.000.00 15.530.40 10.530.19 9.370.16
RP-knn5 0.210.02 0.110.01 0.010.00 15.950.46 11.090.17 9.570.16
knn 0.260.02 0.130.02 0.020.01 18.410.42 10.440.18 5.640.13
RF 0.250.02 0.170.02 0.080.01 14.330.47 9.370.15 5.790.12
Radial SVM 1.580.11 0.890.06 0.180.02 50.030.19 50.410.19 50.790.25
Linear SVM 0.190.02 0.120.01 0.050.01 11.920.27 6.820.11 4.450.11

Radial GP 0.250.02 0.200.02 0.130.01 27.091.32 10.740.21 6.700.13
PenLDA 0.110.02 0.040.01 0.000.00 N/A N/A N/A
NSC 0.290.02 0.240.03 0.060.01 15.720.29 13.630.22 12.830.21
OTE 0.610.07 0.380.05 0.090.02 14.180.25 9.690.17 6.240.13
ESknn 1.740.18 0.880.09 0.410.05 45.760.76 44.810.74 44.450.73

6.2.7. Human Activity Recognition

This dataset (http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
consists of p = 561 accelerometer measurements, recorded from a smartphone whilst a subject is per-
forming an activity. We subsampled the data to include only the walking and laying activities. In the
resulting dataset, there are 1226 ‘walking’ observations (class 0), and 1407 ‘laying’ observations (class
1).

6.2.8. Handwritten digits

The Gisette dataset (https://archive.ics.uci.edu/ml/datasets/Gisette) consists of 6000 ob-
servations of handwritten digits, namely 3000 “4”s and 3000 “9”s. Each observation represents the
original 28 × 28 pixel image, with added noise variables resulting in a 5000-dimensional vector. We
first subsampled 1500 of the 6000 observations, giving 760 “4”s and 740 “9”s – this dataset was then
kept fixed through the subsequent 100 repeats of the experiment. The observations are sparse with a
large number of 0 entries.

6.3. Conclusion of numerical study
The numerical study above reveals the extremely encouraging finite-sample performance achieved by
the random projection ensemble classifier. An RP ensemble method attains the lowest misclassification
error in 23 of the 36 simulated and real data settings investigated, and in 8 of the 13 remaining cases

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Gisette
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an RP ensemble method is in the top three of the classifiers considered. The flexibility offered by the
random projection ensemble classifier – in particular, the fact that any base classifier may be used –
allows the practitioner to adapt the method to work well in a wide variety of problems.

Another key observation is that our assumption 3 is not necessary for the RP method to work
well: in Model 2, we achieve good results using d = 2, while assumption 3 holds only with a 3 (or
higher)-dimensional projection. Moreover, even in situations where assumption 3 does not hold for
any d < p, the RP method is still competitive; see in particular the results for Model 3.

One example where the RP ensemble framework is not effective is for the Gisette dataset. Here the
data are very sparse; for each observation a large proportion of the features are exactly zero. Of course,
applying a Gaussian or Haar random projection to an observation will remove the sparse structure.
In this case, the practitioner may benefit by using an alternative distribution for the projections, such
as axis-aligned projections (cf. the discussion in Section 7).

7. Discussion and extensions

We have introduced a general framework for high-dimensional classification via the combination of
the results of applying a base classifier on carefully selected low-dimensional random projections of
the data. One of its attractive features is its generality: the approach can be used in conjunction with
any base classifier. Moreover, although we explored in detail one method for combining the random
projections (partly because it facilitates rigorous statistical analysis), there are many other options
available here. For instance, instead of only retaining the projection within each block yielding the
smallest estimate of test error, one might give weights to the different projections, where the weights
decrease as the estimate of test error increases.

Many practical classification problems involve K > 2 classes. The main issue in extending our
methodology to such settings is the definition of CRP

n analogous to (2). To outline one approach, let

νn,r(x) :=
1

B1

B1∑

b1=1

1{CAb1
n (x)=r}

for r = 0, 1, . . . ,K − 1. Given α0, . . . , αK−1 > 0 with
∑K−1

r=0 αr = 1, we can then define

CRP
n (x) := sargmax

r=0,...,K−1
{αrνn,r(x)},

where sargmax denotes the smallest element of the argmax in the case of a tie. The choice of
α0, . . . , αK−1 is analogous to the choice of α in the case K = 2. It is therefore natural to seek to
minimise the test error of the corresponding infinite-simulation random projection classifier as before.

In other situations, it may be advantageous to consider alternative types of projection, perhaps
because of additional structure in the problem. One particularly interesting issue concerns ultrahigh-
dimensional settings, say p in the thousands. Here, it may be too time-consuming to generate enough
random projections to explore adequately the space Ad×p. As a mathematical quantification of this,
the cardinality of an ǫ-net in the Euclidean norm of the surface of the Euclidean ball in R

p increases
exponentially in p (e.g. Vershynin, 2012). In such challenging problems, one might restrict the pro-
jections A to be axis-aligned, so that each row of A consists of a single non-zero component, equal to
1, and p− 1 zero components. There are then only

(
p
d

)
≤ pd/d! choices for the projections, and if d is

small, it may be feasible even to carry out an exhaustive search. Of course, this approach loses one
of the attractive features of our original proposal, namely the fact that it is equivariant to orthogonal
transformations. Nevertheless, corresponding theory can be obtained provided that the projection A∗

in assumption 3 is axis-aligned. This is a much stronger requirement, but it seems that imposing
greater structure is inevitable to obtain good classification in such settings.

Our main focus in this work has been on the classification performance of the random projection
ensemble classifier, and not on the interpretability of the class assignments. However, the selected
projections provide weights that give an indication of the relative importance of the different variables
in the model. Another interesting direction, therefore, would be to understand the properties of the
variable ranking induced by the random projection ensemble classifier.
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In conclusion, we believe that random projections offer many exciting possibilities for high-
dimensional data analysis. In a similar spirit to subsampling and bootstrap sampling, we can think of
each random projection as a perturbation of our original data, and effects that are observed over many
different perturbations are often the ‘stable’ effects that are sought by statisticians; cf. Meinshuasen
and Bühlmann (2010); Shah and Samworth (2013) in the context of variable selection. Two of the key
features that make them so attractive for classification problems are the ability to identify ‘good’ ran-
dom projections from the data, and the fact that we can aggregate results from selected projections.
We anticipate that these two properties will be important in identifying future application areas for
related methodologies.

8. Appendix

Proof of Theorem 1. Recall that the training data Tn = {(x1, y1), . . . , (xn, yn)} are fixed and
the projections A1,A2, . . . , are independent and identically distributed in A, independent of the pair
(X,Y ). The test error of the random projection ensemble classifier has the following representation:

E{R(CRP
n )} = E

{
π0

∫

Rp

1{CRP
n (x)=1} dP0(x) + π1

∫

Rp

1{CRP
n (x)=0} dP1(x)

}

= E
{
π0

∫

Rp

1{νn(x)≥α} dP0(x) + π1

∫

Rp

1{νn(x)<α} dP1(x)
}

= π0

∫

Rp

P{νn(x) ≥ α} dP0(x) + π1

∫

Rp

P{νn(x) < α} dP1(x),

where νn(x) is defined in (1), and where the final equality follows by Fubini’s theorem.
Let Ub1 := 1{C

Ab1
n (X)=1}, for b1 = 1, . . . B1. Then, conditional on µn(X) = θ ∈ [0, 1], the random

variables U1, . . . , UB1
are independent, each having a Bernoulli(θ) distribution. Recall that Gn,0 and

Gn,1 are the distribution functions of µn(X)|{Y = 0} and µn(X)|{Y = 1}, respectively. We can
therefore write

∫

Rp

P{νn(x) < α} dP1(x) =

∫

[0,1]
P

{ 1

B1

B1∑

b1=1

Ub1 < α
∣∣∣µ̂n(X) = θ

}
dGn,1(θ)

=

∫

[0,1]
P(T < B1α) dGn,1(θ),

where here and throughout the proof, T denotes a Bin(B1, θ) random variable. Similarly,
∫

Rp

P{νn(x) ≥ α} dP0(x) = 1−
∫

[0,1]
P(T < B1α) dGn,0(θ).

It follows that

E{R(CRP
n )} = π0 +

∫

[0,1]
P(T < B1α) dG

◦
n(θ),

where G◦
n := π1Gn,1 − π0Gn,0. Writing g◦n := π1gn,1 − π0gn,0, we now show that

∫

[0,1]

{
P(T < B1α)− 1{θ<α}

}
dG◦

n(θ) =
1− α− JB1αK

B1
g◦n(α) +

α(1− α)

2B1
ġ◦n(α) + o

( 1

B1

)
(18)

as B1 → ∞. Our proof involves a one-term Edgeworth expansion to the binomial distribution function
in (18), where the error term is controlled uniformly in the parameter. The expansion relies on the
following version of Esseen’s smoothing lemma.

Theorem 4. (Esseen, 1945, Chapter 2, Theorem 2b) Let c1, C1, S > 0, let F : R → [0,∞)
be a non-decreasing function and let G : R → R be a function of bounded variation. Let F ∗(s) :=∫∞
−∞ exp(ist) dF (t) and G∗(s) :=

∫∞
−∞ exp(ist) dG(t) be the Fourier–Stieltjes transforms of F and G,

respectively. Suppose that
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• limt→−∞ F (t) = limt→−∞G(t) = 0 and limt→∞ F (t) = limt→∞G(t);

•
∫∞
−∞ |F (t)−G(t)| dt < ∞;

• The set of discontinuities of F and G is contained in {ti : i ∈ Z}, where (ti) is a strictly increasing
sequence with inf i{ti+1 − ti} ≥ c1; moreover F is constant on the intervals [ti, ti+1) for all i ∈ Z;

• |Ġ(t)| ≤ C1 for all t /∈ {ti : i ∈ Z}.
Then there exist constants c2, C2 > 0 such that

sup
t∈R

|F (t)−G(t)| ≤ 1

π

∫ S

−S

∣∣∣∣
F ∗(s)−G∗(s)

s

∣∣∣∣ ds+
C1C2

S
,

provided that Sc1 ≥ c2.

Let σ2 := θ(1 − θ), and let Φ and φ denote the standard normal distribution and density functions,
respectively. Moreover, for t ∈ R, let

p(t) = p(t, θ) :=
(1− t2)(1− 2θ)

6σ
,

and

q(t) = q(t, B1, θ) :=
1/2− JB1θ +B

1/2
1 σtK

σ
.

In Proposition 3 below we apply Theorem 4 to the following functions:

FB1
(t) = FB1

(t, θ) := P

(
T −B1θ

B
1/2
1 σ

< t

)
, (19)

and

GB1
(t) = GB1

(t, θ) := Φ(t) + φ(t)
p(t, θ) + q(t, B1, θ)

B
1/2
1

. (20)

Proposition 3. Let FB1
and GB1

be as in (19) and (20). There exists a constant C > 0 such
that, for all B1 ∈ N,

sup
θ∈(0,1)

sup
t∈R

σ3|FB1
(t, θ)−GB1

(t, θ)| ≤ C

B1
.

Proposition 3, whose proof is given after the proof of Proposition 2, bounds uniformly in θ the error
in the one-term Edgeworth expansion GB1

of the distribution function FB1
. Returning to the proof

of Theorem 1, we will argue that the dominant contribution to the integral in (18) arises from the

interval (max{0, α− ǫ1},min{α+ ǫ1, 1}), where ǫ1 := B
−1/2
1 logB1. For the remainder of the proof we

assume B1 is large enough that [α− ǫ1, α + ǫ1] ⊆ (0, 1).
For the region |θ − α| ≥ ǫ1, by Hoeffding’s inequality, we have that

sup
|θ−α|≥ǫ1

∣∣P(T < B1α)− 1{θ<α}
∣∣ ≤ sup

|θ−α|≥ǫ1

exp
(
−2B1(θ − α)2

)
≤ e−2 log2 B1 = O(B−M

1 ),

for each M > 0, as B1 → ∞. Writing I := [α− ǫ1, α+ ǫ1], it follows that
∫

[0,1]

{
P(T < B1α)− 1{θ<α}

}
dG◦

n(θ) =

∫

I

{
P(T < B1α)− 1{θ<α}

}
dG◦

n(θ) +O(B−M
1 ), (21)

for each M > 0, as B1 → ∞.
For the region |θ− α| < ǫ1, by Proposition 3, there exists C ′ > 0 such that, for all B1 sufficiently

large,

sup
|θ−α|<ǫ1

∣∣∣∣P(T < B1α)− Φ

(
B1

1/2(α− θ)

σ

)
− 1

B
1/2
1

φ

(
B1

1/2(α− θ)

σ

)
r

(
B1

1/2(α− θ)

σ

)∣∣∣∣ ≤
C ′

B1
,
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where r(t) := p(t)+ q(t). Hence, using the fact that for large B1, sup|θ−α|<ǫ1 |g◦n(θ)| ≤ |g◦n(α)|+1 < ∞
under assumption 1, we have

∫

I

{
P(T < B1α)− 1{θ<α}

}
dG◦

n(θ)

=

∫

I

{
Φ

(
B

1/2
1 (α− θ)

σ

)
− 1{θ<α}

}
dG◦

n(θ)

+
1

B
1/2
1

∫

I
φ

(
B

1/2
1 (α− θ)

σ

)
r

(
B

1/2
1 (α− θ)

σ

)
dG◦

n(θ) + o
( 1

B1

)
, (22)

as B1 → ∞. To aid exposition, we will henceforth concentrate on the dominant terms in our expan-
sions, denoting the remainder terms as R1, R2, . . .. These remainders are then controlled at the end
of the argument. For the first term in (22), we write

∫

I

{
Φ

(
B

1/2
1 (α− θ)

σ

)
− 1{θ<α}

}
dG◦

n(θ)

=

∫

I

{
Φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)
− 1{θ<α}

}
dG◦

n(θ)

+
(1− 2α)B

1/2
1

2{α(1 − α)}3/2
∫

I
(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dG◦

n(θ) +R1. (23)

Now, for the first term in (23),

∫

I

{
Φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)
− 1{θ<α}

}
dG◦

n(θ)

=

∫ α+ǫ1

α−ǫ1

{
Φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)
− 1{θ<α}

}{
g◦n(α) + (θ − α)ġ◦n(α)

}
dθ +R2

=

√
α(1− α)

B
1/2
1

∫ ∞

−∞
{Φ(−u)− 1{u<0}}

{
g◦n(α) +

√
α(1− α)

B
1/2
1

uġ◦n(α)

}
du+R2 +R3

=
α(1 − α)

2B1
ġ◦n(α) +R2 +R3. (24)

For the second term in (23), write

(1− 2α)B
1/2
1

2{α(1 − α)}3/2
∫

I
(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dG◦

n(θ)

=
(1− 2α)B

1/2
1

2{α(1 − α)}3/2 g
◦
n(α)

∫ α+ǫ1

α−ǫ1

(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ +R4

=
1/2 − α

B1
g◦n(α)

∫ ∞

−∞
u2φ(−u) du+R4 +R5 =

1/2− α

B1
g◦n(α) +R4 +R5. (25)
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Returning to the second term in (22), observe that

1

B
1/2
1

∫

I
φ

(
B

1/2
1 (α− θ)

σ

)
r

(
B

1/2
1 (α− θ)

σ

)
dG◦

n(θ)

=
1/2− JB1αK

B
1/2
1

∫

I

1

σ
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦

n(θ)

+
1

6B
1/2
1

∫

I

(1 − 2θ)

σ

{
1− B1(α− θ)2

σ2

}
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦

n(θ)

=
1/2− JB1αK

B
1/2
1

∫

I

1

σ
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦

n(θ) +R6

=
1/2 − JB1αK

B
1/2
1

√
α(1− α)

g◦n(α)
∫ α+ǫ1

α−ǫ1

φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ +R6 +R7

=
1/2− JB1αK

B1
g◦n(α) +R6 +R7 +R8. (26)

The claim (18) will now follow from (21), (22), (23), (24), (25) and (26), once we have shown that

8∑

j=1

|Rj | = o(B−1
1 ) (27)

as B1 → ∞.

To bound R1: For ζ ∈ (0, 1), let hθ(ζ) := Φ
(B1/2

1 (α−θ)√
ζ(1−ζ)

)
. Observe that, by a Taylor expansion

about ζ = α, there exists B0 ∈ N, such that, for all B1 > B0 and all θ, ζ ∈ (α− ǫ1, α+ ǫ1),

∣∣∣∣Φ
(
B

1/2
1 (α− θ)√
ζ(1− ζ)

)
− Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
+ (ζ − α)

(1 − 2α)B
1/2
1 (α− θ)

2{α(1 − α)}3/2 φ

(
B

1/2
1 (α− θ)√
α(1− α)

)∣∣∣∣

= |hθ(ζ)− hθ(α) − (ζ − α)ḣθ(α)|

≤ (ζ − α)2

2
sup

ζ′∈[α−ζ,α+ζ]
|ḧθ(ζ ′)| ≤ (ζ − α)2

log3 B1

2
√
2π{α(1 − α)}7/2

.

Using this bound with ζ = θ, we deduce that, for all B1 sufficiently large,

|R1| =
∣∣∣∣
∫

I

{
Φ

(
B

1/2
1 (α− θ)

σ

)
− Φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)

− (1− 2α)B
1/2
1 (α− θ)2

2{α(1 − α)}3/2 φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)}
dG◦

n(θ)

∣∣∣∣

≤ log3 B1

2
√
2π{α(1 − α)}7/2

∫ α+ǫ1

α−ǫ1

(θ − α)2|g◦n(θ)| dθ

≤ log6 B1

3
√
2πB

3/2
1 {α(1 − α)}7/2

sup
|θ−α|≤ǫ1

|g◦n(θ)| = o
( 1

B1

)

as B1 → ∞.

To bound R2: Since g◦n is differentiable at α, given ǫ > 0, there exists δǫ > 0 such that

|g◦n(θ)− g◦n(α) − (θ − α)ġ◦n(α)| < ǫ|θ − α|,
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for all |θ − α| < δǫ. It follows that, for all B1 sufficiently large,

|R2| =
∣∣∣∣
∫

I

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}
dG◦

n(θ)

−
∫ α+ǫ1

α−ǫ1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}{
g◦n(α) + (θ − α)ġ◦n(α)

}
dθ

∣∣∣∣

≤ ǫ

∫ α+ǫ1

α−ǫ1

∣∣∣∣Φ
(
B

1/2
1 (α− θ)√
α(1 − α)

)
− 1{θ<α}

∣∣∣∣|θ − α| dθ

≤ ǫα(1 − α)

B1

∫ logB1/
√

α(1−α)

− logB1/
√

α(1−α)

∣∣Φ(−u)− 1{u<0}
∣∣|u| du

≤ 2ǫα(1 − α)

B1

∫ ∞

0
uΦ(−u) du =

ǫα(1− α)

2B1
.

We deduce that |R2| = o(B−1
1 ) as B1 → ∞.

To bound R3: For large B1, we have

|R3| =
∣∣∣∣
∫ α+ǫ1

α−ǫ1

{
Φ

(
B

1/2
1 (α − θ)√
α(1 − α)

)
− 1{θ<α}

}{
g◦n(α) + (θ − α)ġ◦n(α)

}
dθ

−
√

α(1 − α)

B
1/2
1

∫ ∞

−∞
{Φ(−u)− 1{u<0}}

{
g◦n(α) +

√
α(1 − α)

B
1/2
1

uġ◦n(α)

}
du

∣∣∣∣

=
2α(1− α)

B1
|ġ◦n(α)|

∫ ∞

ǫ1B
1/2
1 /{α(1−α)}1/2

uΦ(−u) du

≤ 2{α(1 − α)}3/2
B1 logB1

|ġ◦n(α)|
∫ ∞

0
u2Φ(−u) du =

2
√
2{α(1 − α)}3/2
3
√
πB1 logB1

|ġ◦n(α)| = o(B−1
1 )

as B1 → ∞.
To bound R4: Since g◦n is continuous at α, given ǫ > 0, there exists B′

0 ∈ N such that, for all
B1 > B′

0,
sup

|θ−α|≤ǫ1

|g◦n(θ)− g◦n(α)| < ǫ. (28)

Hence, given ǫ > 0, for all B1 > B′
0,

|R4| =
∣∣∣∣
(1− 2α)B

1/2
1

2{α(1 − α)}3/2
∫ α+ǫ1

α−ǫ1

(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
{g◦n(θ)− g◦n(α)} dθ

∣∣∣∣

≤ ǫ|1− 2α|
2B1

∫ ∞

−∞
u2φ(−u) du =

ǫ|1− 2α|
2B1

.

To bound R5: For all B1 sufficiently large,

|R5| =
|1− 2α|

B1
|g◦n(α)|

∫ ∞

logB1/
√

α(1−α)
u2φ(−u) du

≤
√

α(1 − α)

B1 logB1
|g◦n(α)|

∫ ∞

0
u3φ(−u) du =

√
2α(1 − α)√
πB1 logB1

|g◦n(α)| = o
( 1

B1

)

as B1 → ∞.
To bound R6: We write R6 = R61 +R62, where

R61 :=
(1− 2α)

6B
1/2
1

√
α(1− α)

∫

I

{
1− B1(α− θ)2

α(1− α)

}
φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)
dG◦

n(θ)
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and

R62 :=
1

6B
1/2
1

∫

I

(1− 2θ)

σ

{
1− B1(α− θ)2

σ2

}
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦

n(θ)

− (1− 2α)

6B
1/2
1

√
α(1 − α)

∫

I

{
1− B1(α− θ)2

α(1− α)

}
φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)
dG◦

n(θ).

By (28), it follows that, for B1 > B′
0 sufficiently large,

|R61| ≤
|1− 2α|

6B
1/2
1

√
α(1 − α)

|g◦n(α)|
∣∣∣∣
∫ α+ǫ1

α−ǫ1

{
1− B1(α− θ)2

α(1 − α)

}
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ

∣∣∣∣

+ ǫ
|1− 2α|

6B
1/2
1

√
α(1 − α)

∫ α+ǫ1

α−ǫ1

∣∣∣∣1−
B1(α − θ)2

α(1− α)

∣∣∣∣φ
(
B

1/2
1 (α− θ)√
α(1 − α)

)
dθ.

≤ |1− 2α|
6B1

|g◦n(α)|
∣∣∣∣
∫ logB1/

√
α(1−α)

− logB1/
√

α(1−α)
(1− u2)φ(−u) du

∣∣∣∣

+ ǫ
|1− 2α|
6B1

∫ ∞

−∞
(1 + u2)φ(−u) du ≤ ǫ

B1
.

We deduce that R61 = o(B−1
1 ) as B1 → ∞.

To control R62, by the mean value theorem, we have that for all B1 sufficiently large and all
ζ ∈ [α− ǫ1, α+ ǫ1],

sup
|θ−α|<ǫ1

∣∣∣∣∣
(1− 2ζ)√
ζ(1− ζ)

{
1−B1(α− θ)2

ζ(1− ζ)

}
φ

(
B

1/2
1 (α− θ)√
ζ(1− ζ)

)

− (1− 2α)√
α(1 − α)

{
1− B1(α− θ)2

α(1 − α)

}
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)∣∣∣∣∣

≤ log4 B1√
2π{α(1 − α)}7/2

|ζ − α|.

Thus, for large B1,

|R62| ≤
log4B1

6
√
2πB

1/2
1 {α(1 − α)}7/2

sup
|θ−α|≤ǫ1

|g◦n(θ)|
∫ α+ǫ1

α−ǫ1

|θ − α| dθ

≤ log6 B1{1 + |g◦n(α)|}
6
√
2πB

3/2
1 {α(1 − α)}7/2

= o
( 1

B1

)
.

We deduce that |R6| = o(B−1
1 ) as B1 → ∞.

To bound R7: write R7 = R71 +R72, where

R71 :=
1/2 − JB1αK

B
1/2
1

√
α(1 − α)

∫ α+ǫ1

α−ǫ1

φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
{g◦n(θ)− g◦n(α)} dθ,

and

R72 :=
1/2− JB1αK

B
1/2
1

∫

I

{
1

σ
φ

(
B

1/2
1 (α− θ)

σ

)
− 1√

α(1− α)
φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)}
dG◦

n(θ).

By the bound in (28), given ǫ > 0, for all B1 sufficiently large,

|R71| ≤
ǫ

2B
1/2
1

√
α(1 − α)

∫ ∞

−∞
φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)
dθ =

ǫ

2B1
.
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Moreover, by the mean value theorem, for all B1 sufficiently large and all |ζ − α| ≤ ǫ1,

sup
|θ−α|<ǫ1

∣∣∣∣∣
1√

ζ(1− ζ)
φ

(
B

1/2
1 (α − θ)√
ζ(1− ζ)

)
− 1√

α(1− α)
φ

(
B

1/2
1 (α− θ)√
α(1 − α)

)∣∣∣∣∣

≤ log2 B1√
2π{α(1 − α)}5/2

|ζ − α|.

It follows that, for all B1 sufficiently large,

|R72| ≤
log2B1

2
√
2πB

1/2
1 {α(1 − α)}5/2

sup
|θ−α|≤ǫ1

|g◦n(θ)|
∫ α+ǫ1

α−ǫ1

|θ − α| dθ

≤ log4 B1{1 + |g◦n(α)|}
2
√
2πB

3/2
1 {α(1 − α)}5/2

.

We deduce that |R7| = o(B−1
1 ) as B1 → ∞.

To bound R8: We have

|R8| =
2(1/2 − JB1αK)

B1
|g◦n(α)|

∫ ∞

ǫ1B
1/2
1 /{α(1−α)}1/2

φ(−u) du = o
( 1

B1

)

as B1 → ∞.

We have now established the claim at (27), and the result follows.

Proof of Theorem 2. In the case where B1 < ∞, we have

R(CRP
n )−R(CBayes)

=

∫

Rp

[
η(x)(1{CRP

n (x)=0} − 1{CBayes(x)=0}) + {1− η(x)}(1{CRP
n (x)=1} − 1{CBayes(x)=1})

]
dPX(x)

=

∫

Rp

{
|2η(x) − 1||1{νn(x)<α} − 1{η(x)<1/2}|

}
dPX(x)

=

∫

Rp

{
|2η(x) − 1|1{νn(x)≥α}1{η(x)<1/2} + |2η(x) − 1|1{νn(x)<α}1{η(x)≥1/2}

}
dPX(x)

≤
∫

Rp

[ 1
α
|2η(x) − 1|νn(x)1{η(x)<1/2} +

1

1− α
|2η(x) − 1|{1 − νn(x)}1{η(x)≥1/2}

]
dPX(x).

It follows that

E{R(CRP
n )} −R(CBayes) ≤ E

{∫

Rp

1

α
|2η(x) − 1|1{CA1

n (x)=1}1{η(x)<1/2}

+
1

1− α
|2η(x) − 1|1{CA1

n (x)=0}1{η(x)≥1/2} dPX(x)

}

≤ 1

min(α, 1 − α)
E

{∫

Rp

|2η(x) − 1|
∣∣1{CA1

n (x)=0} − 1{η(x)<1/2}
∣∣ dPX(x)

}

=
1

min(α, 1 − α)

[
E{R(CA1

n )} −R(CBayes)
]
,

as required. When B1 = ∞, we replace both occurrences of R(CRP
n ) with R(CRP∗

n ) and the argument
goes through in almost identical fashion after changing νn to µn.

Proof of Theorem 3. First write

E{R(CA1

n )} −R(CBayes) = E(RA1

n )−R(CBayes) + ǫn.
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Using assumption 2, we have that

E(RA1

n ) = E
(
RA1

n 1{RA1
n ≤R∗

n+|ǫn|}
)
+E

(
RA1

n 1{RA1
n >R∗

n+|ǫn|}
)

≤ R∗
n + |ǫn|+P(RA1

n > R∗
n + |ǫn|)

= R∗
n + |ǫn|+P(RA1,1

n > R∗
n + |ǫn|)B2

≤ R∗
n + |ǫn|+ (1− β)B2 .

But, for any A ∈ A and by definition of R∗
n and ǫAn , we have R∗

n ≤ RA
n = R(CA

n ) − ǫAn . It therefore
follows by Theorem 2 that

E{R(CRP
n )} −R(CBayes) ≤ 1

min(α, 1 − α)

[
E{R(CA1

n )} −R(CBayes)
]

≤ R(CA
n )−R(CBayes)

min(α, 1 − α)
+

2|ǫn| − ǫAn
min(α, 1 − α)

+
(1− β)B2

min(α, 1 − α)
,

as required.
Proof of Proposition 1. For a Borel set C ⊆ R

d, let PA∗X(C) :=
∫
{x:A∗x∈C} dPX(x), so that

PA∗X is the marginal distribution of A∗X. Further, for z ∈ R
d, write PX|A∗X=z for the conditional

distribution of X given A∗X = z. If Y is independent of X given A∗X, and if B is a Borel subset of
R
p, then

∫

B
ηA

∗

(A∗x) dPX(x) =

∫

Rd

∫

B∩{w:A∗w=z}
ηA

∗

(A∗w) dPX|A∗X=z(w) dPA∗X(z)

=

∫

Rd

ηA
∗

(z)P(X ∈ B|A∗X = z) dPA∗X(z)

=

∫

Rd

P(Y = 1,X ∈ B|A∗X = z) dPA∗X(z)

= P(Y = 1,X ∈ B) =

∫

B
η(x) dPX (x).

We deduce that PX({x ∈ R
p : η(x) 6= ηA

∗

(A∗x)}) = 0; in particular, assumption 3 holds, as required.
Proof of Proposition 2. We have

R(CA∗−Bayes) =

∫

Rp×{0,1}
1{CA∗

−Bayes(A∗x)6=y} dP (x, y)

=

∫

Rp

η(x)1{ηA∗ (A∗x)<1/2} dPX(x) +

∫

Rp

{1− η(x)}1{ηA∗ (A∗x)≥1/2} dPX(x)

=

∫

Rp

η(x)1{η(x)<1/2} dPX(x) +

∫

Rp

{1− η(x)}1{η(x)≥1/2} dPX(x)

= R(CBayes),

where we have used assumption 3 to obtain the penultimate equality.
Proof of Proposition 3. Recall that σ2 := θ(1− θ). Let

F ∗
B1
(s) = F ∗

B1
(s, θ) :=

∫ ∞

−∞
eist dFB1

(t) =

{
(1− θ) exp

(
− isθ

B
1/2
1 σ

)
+ θ exp

(
is(1− θ)

B
1/2
1 σ

)}B1

.

Moreover, let P (t) := φ(t)p(t)

B
1/2
1

and Q(t) := φ(t)q(t)

B
1/2
1

. By, for example, Gnedenko and Kolmogorov (1954,

Chapter 8, Section 43), we have

Φ∗(s) :=
∫

R

exp(ist) dΦ(t) = exp(−s2/2),
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P ∗(s) :=
∫

R

exp(ist) dP (t) = − 1− 2θ

6B
1/2
1 σ

is3 exp(−s2/2)

and

Q∗(s) :=
∫

R

exp(ist) dQ(t) = − s

2πB
1/2
1 σ

∑

l∈Z\{0}

exp(i2πB1lθ)

l
exp
{
−1

2

(
s+ 2πB

1/2
1 σl

)2}
.

Thus

G∗
B1
(s) = G∗

B1
(s, θ) :=

∫

R

exp(ist) dGB1
(t) = Φ∗(s) + P ∗(s) +Q∗(s)

= exp(−s2/2)− 1− 2θ

6B
1/2
1 σ

is3 exp(−s2/2)

− s

2πB
1/2
1 σ

∑

l∈Z\{0}

exp(i2πB1lθ)

l
exp
{
−1

2

(
s+ 2πB

1/2
1 σl

)2}
.

Letting c2 > 0 be the constant given in the statement of Theorem 4 (in fact we assume without loss
of generality that c2 > π), we show that there exists a constant C ′ > 0 such that, for all B1 ∈ N,

sup
θ∈(0,1)

σ3

∫ c2B
1/2
1 σ

−c2B
1/2
1 σ

∣∣∣∣
F ∗
B1
(s, θ)−G∗

B1
(s, θ)

s

∣∣∣∣ ds ≤
C ′

B1
. (29)

To show (29), write

∫ c2B
1/2
1 σ

−c2B
1/2
1 σ

∣∣∣∣
F ∗
B1
(s)−G∗

B1
(s)

s

∣∣∣∣ ds =
∫ S1

−S1

∣∣∣∣
F ∗
B1
(s)−G∗

B1
(s)

s

∣∣∣∣ ds

+

∫

S1≤|s|≤S2

∣∣∣∣
F ∗
B1
(s)−G∗

B1
(s)

s

∣∣∣∣ ds+
∫

S2≤|s|≤c2B
1/2
1 σ

∣∣∣∣
F ∗
B1
(s)−G∗

B1
(s)

s

∣∣∣∣ ds, (30)

where S1 :=
B1/2

1 σ3/2

32(3θ2−3θ+1)3/4 and S2 := πB
1/2
1 σ. Note that S1 ≤ S2/2 for all θ ∈ (0, 1).

We bound each term in (30) in turn. By Gnedenko and Kolmogorov (1954, Theorem 1, Section
41), there exists a universal constant C3 > 0, such that, for all |s| ≤ S1,

|F ∗
B1

(s, θ)− Φ∗(s)− P ∗(s)| ≤ C3

B1σ3
(s4 + s6) exp(−s2/4).

Thus

∫ S1

−S1

∣∣∣∣
F ∗
B1
(s)− Φ∗(s)− P ∗(s)

s

∣∣∣∣ ds ≤
C3

B1σ3

∫ ∞

−∞
(|s|3 + |s|5) exp(−s2/4) ds =

144C3

B1σ3
. (31)

Moreover, observe that
(
s+ 2πB

1/2
1 σl

)2 ≥ s2 + 2π2B1σ
2l2 for all |s| ≤ S1. Thus, for |s| ≤ S1,

∣∣∣∣
Q∗(s)

s

∣∣∣∣ ≤
1

2πB
1/2
1 σ

∣∣∣∣
∑

l∈Z\{0}

exp(i2πB1lθ)

l
exp
{
−1

2

(
s+ 2πB

1/2
1 σl

)2}
∣∣∣∣

≤ φ(s)
√
2πB

1/2
1 σ

∫ ∞

−∞
exp
(
−π2B1σ

2u2
)
du =

φ(s)√
2πB1σ2

.

It follows that ∫ S1

−S1

∣∣∣∣
Q∗(s)

s

∣∣∣∣ ds ≤ 1√
2πB1σ2

. (32)
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For |s| ∈ [S1, S2], observe that

|F ∗
B1
(s)| =

[
1− 2σ2

{
1− cos

( s

B
1/2
1 σ

)}]B1/2

≤ exp(−s2/8).

Thus ∫

S1≤|s|≤S2

∣∣∣∣
F ∗
B1

(s)

s

∣∣∣∣ ds ≤
2

S2
1

∫ S2

S1

s exp(−s2/8) ds ≤ 213

B1σ3
. (33)

Now, ∫

S1≤|s|≤S2

∣∣∣∣
Φ∗(s)
s

∣∣∣∣ ds ≤ 2

S2
1

∫ ∞

0
s exp(−s2/2) ds ≤ 211

B1σ3
, (34)

and ∫

S1≤|s|≤S2

∣∣∣∣
P ∗(s)

s

∣∣∣∣ ds ≤
1

3S1B
1/2
1 σ

∫ ∞

0
s3 exp(−s2/2) ds ≤ 26

3
√
2B1σ3

. (35)

To bound the final term, observe that, for all |s| ∈ [S1, S2], since (a+b)2 ≥ (a2+b2)/5 for all |a| ≤ |b|/2,
we have

∫

S1≤|s|≤S2

∣∣∣∣
Q∗(s)

s

∣∣∣∣ ds ≤
1

2πB
1/2
1 σ

∫

S1≤|s|≤S2

e−s2/10

∫ ∞

−∞
e−2π2B1σ2u2/5 du ds ≤ 5

4πB1σ3
. (36)

Finally, for |s| ∈ [S2, c2B
1/2
1 σ], note that

∫

S2≤|s|≤c2B
1/2
1 σ

∣∣∣∣
Φ∗(s) + P ∗(s)

s

∣∣∣∣ ds ≤
2

S2
2

∫ ∞

0
se−s2/2 ds +

1

3S2B
1/2
1 σ

∫ ∞

0
s3e−s2/2 ds

≤ 1

π2B1σ3

(
1 +

π

3

)
. (37)

To bound the remaining terms, by substituting s = B
1/2
1 σu, we see that

∫ c2B
1/2
1 σ

S2

∣∣∣∣
F ∗
B1
(s)−Q∗

B1
(s)

s

∣∣∣∣ ds =
∫ c2

π

∣∣∣∣
F ∗
B1
(B

1/2
1 σu)−Q∗

B1
(B

1/2
1 σu)

u

∣∣∣∣ du

=

J∑

j=1

∫ π(2j+1)

π(2j−1)

∣∣∣∣
F ∗
B1

(B
1/2
1 σu)−Q∗

B1
(B

1/2
1 σu)

u

∣∣∣∣ du

+

∫ c2

π(2J+1)

∣∣∣∣
F ∗
B1
(B

1/2
1 σu)−Q∗

B1
(B

1/2
1 σu)

u

∣∣∣∣ du, (38)

where J := ⌊ c2−π
2π ⌋. Let

Ij :=

∫ π(2j+1)

π(2j−1)

∣∣∣∣
F ∗
B1
(B

1/2
1 σu)−Q∗

B1
(B

1/2
1 σu)

u

∣∣∣∣ du

=

∫ π

−π

∣∣∣∣
F ∗
B1

(
B

1/2
1 σ(v + 2πj)

)
−Q∗

B1

(
B

1/2
1 σ(v + 2πj)

)

v + 2πj

∣∣∣∣ dv. (39)

Observe that

F ∗
B1

(
B

1/2
1 σ(v + 2πj)

)
=
[
(1− θ) exp

{
−i(v + 2πj)θ

}
+ θ exp

{
i(v + 2πj)(1 − θ)

}]B1

= exp(−i2πB1jθ)
[
(1− θ) exp(−ivθ) + θ exp{iv(1 − θ)}

]B1

= exp(−i2πB1jθ)F
∗
B1
(B

1/2
1 σv).
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Similarly,

Q∗
B1

(
B

1/2
1 σ(v + 2πj)

)
= −(v + 2πj)

2π

∑

l∈Z\{0}

exp(i2πB1lθ)

l
exp

{
−B1σ

2

2

(
v + 2πj + 2πl

)2
}

=
(v + 2πj) exp(−i2πB1jθ)

2πj
exp

(
−B1σ

2v2

2

)

− (v + 2πj)

2π

∑

l∈Z\{0,−j}

exp(i2πB1lθ)

l
exp

{
−B1σ

2

2

(
v + 2πj + 2πl

)2
}
.

But, for v ∈ [−π, π],
∣∣∣∣
1

2π

∑

l∈Z\{0,−j}

ei2πB1lθ

l
exp

{
−B1σ

2

2

(
v + 2πj + 2πl

)2
}∣∣∣∣ ≤

1

2π

∑

m∈Z\{0}
e−

B1σ2

2
(v+2πm)2

≤ e−B1σ2v2/10

2π

∑

m∈Z\{0}
e−2π2B1σ2m2/5 ≤ e−B1σ2v2/10

π(e2π2B1σ2/5 − 1)
≤ 5e−B1σ2v2/10

2π3B1σ2
.

It follows that

Ij ≤
∫ π

−π

∣∣∣∣
F ∗
B1
(B

1/2
1 σv)−

(
v

2πj + 1
)
exp
(
−B1σ2v2

2

)

v + 2πj

∣∣∣∣ dv +
5
√
5

√
2π5/2B

3/2
1 σ3

. (40)

Now
∫ π

−π

∣∣∣∣
F ∗
B1

(B
1/2
1 σv)− exp

(
−B1σ2v2

2

)

v + 2πj

∣∣∣∣ dv ≤ 1

πjB
1/2
1 σ

∫ πB1/2
1 σ

−πB1/2
1 σ

∣∣F ∗
B1

(u)− e−u2/2
∣∣ du

=
1

πjB
1/2
1 σ

∫ S3

−S3

∣∣F ∗
B1

(u)− e−u2/2
∣∣ du+

1

πjB
1/2
1 σ

∫

S3≤|u|≤πB1/2
1 σ

∣∣F ∗
B1
(u)− e−u2/2

∣∣ du, (41)

where S3 :=
B1/2

1 σ
5(2θ2−2θ+1) ≥ S1. By Gnedenko and Kolmogorov (1954, Theorem 2, Section 40), we have

that

1

πjB
1/2
1 σ

∫ S3

−S3

∣∣F ∗
B1
(u)− e−u2/2

∣∣ du ≤ 7

6πjB1σ2

∫ S3

−S3

|u|3e−u2/4 du ≤ 56

3πjB1σ2
. (42)

Moreover,

1

πjB
1/2
1 σ

∫

S3≤|u|≤πB1/2
1 σ

∣∣F ∗
B1
(u)− e−u2/2

∣∣ du ≤ 2

πjS3B
1/2
1 σ

∫ ∞

0
u(e−u2/8 + e−u2/2) du ≤ 50

πjB1σ2
.

(43)

Finally,

1

2πj

∫ π

−π

|v|
|v|+ 2πj

exp

(
−B1σ

2v2

2

)
dv ≤ 1

2π2j2

∫ π

0
v exp

(
−B1σ

2v2

2

)
dv ≤ 1

2π2j2B1σ2
. (44)

By (38), (39), (40), (41), (42), (43) and (44), it follows that

∫

S2≤|s|≤c2B
1/2
1 σ

∣∣∣∣
F ∗
B1

(s)−Q∗
B1
(s)

s

∣∣∣∣ ds ≤
10
√
5(J + 1)

√
2π5/2B

3/2
1 σ3

+
140

πB1σ2

J+1∑

j=1

1

j

≤ 10
√
5(J + 1)

√
2π5/2B

3/2
1 σ3

+
140

πB1σ2
{1 + log (J + 1)}. (45)

By (30), (31), (32), (33), (34), (35), (36), (37) and (45), we conclude that (29) holds. The result now

follows from Theorem 4, by taking c1 = 1
B1/2

1 σ
, C1 =

1
3B1/2

1 σ
and S = c2B

1/2
1 σ in that result.
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Random-projection ensemble classification: supplementary mate-
rial

This is the supplementary material for Cannings and Samworth (2017), hereafter referred to as
the main text.

9. A bound on the Monte Carlo variance of R(CRP
n )

The following bound on the asymptotic Monte Carlo variance of R(CRP
n ) complements the result on

its Monte Carlo expectation presented in Theorem 1:

Proposition 4. Assume assumption 1. Then

lim sup
B1→∞

B1Var{R(CRP
n )} ≤ α(1− α)ḡ2n(α),

where ḡn(α) := π0gn,0(α) + π1gn,1(α).

Proof. Recall that the training data are considered fixed. First write

R(CRP
n ) = π0

∫

Rp

1{νn(x)≥α} dP0(x) + π1

∫

Rp

1{νn(x)<α} dP1(x).

Now, for r = 0, 1,

Var
(∫

Rp

1{νn(x)<α} dPr(x)
)
= E

{(∫

Rp

1{νn(x)<α} −P{νn(x) < α} dPr(x)
)2}

= E
(∫

Rp

∫

Rp

[1{νn(x)<α} −P{νn(x) < α}][1{νn(x′)<α} −P{νn(x′) < α}] dPr(x) dPr(x
′)
)

=

∫

Rp

∫

Rp

P{νn(x) < α, νn(x
′) < α} −P{νn(x) < α}P{νn(x′) < α} dPr(x) dPr(x

′)

≤
∫

Rp

∫

Rp

min
[
P{νn(x) < α},P{νn(x′) < α}

]
−P{νn(x) < α}P{νn(x′) < α} dPr(x) dPr(x

′),

where we used Fubini’s theorem for the final equality. Similarly to the proof of Theorem 1, and letting
T ∼ Bin(B1, θ) and T ′ ∼ Bin(B1, θ

′),
∫

Rp

∫

Rp

min
[
P{νn(x) < α},P{νn(x′) < α}

]
−P{νn(x) < α}P{νn(x′) < α} dPr(x) dPr(x

′)

=

∫

[0,1]

∫

[0,1]
min

{
P(T < B1α),P(T

′ < B1α)
}
− P(T ′ < B1α)P(T < B1α) dGn,r(θ) dGn,r(θ

′)

≤ 2

∫

[0,1]

∫

[0,θ′]
P(T ′ < B1α)P(T ≥ B1α) dGn,r(θ) dGn,r(θ

′).

Now, again similarly to the proof of Theorem 1, and assuming B1 is large enough that [α−ǫ1, α+ǫ1] ⊆
(0, 1), where ǫ1 := B

−1/2
1 logB1, we have

∫

[0,1]

∫

[0,θ′]
P(T ′ < B1α)P(T ≥ B1α) dGn,r(θ) dGn,r(θ

′)

=

∫

[α−ǫ1,α+ǫ1]

∫

[α−ǫ1,θ′]
P(T ′ < B1α)P(T ≥ B1α) dGn,r(θ) dGn,r(θ

′) +O(B−M
1 ), (46)

for all M > 0, as B1 → ∞. By the Berry–Esseen theorem (e.g. Gnedenko and Kolmogorov, 1954),
there exists C > 0 such that

sup
|θ−α|<ǫ1

∣∣∣∣P(T < B1α)− Φ

(
B1

1/2(α− θ)

σ

)∣∣∣∣ ≤
C

B
1/2
1

.
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Hence, for θ′ ∈ [α− ǫ1, α+ ǫ1], and for large B1,

∣∣∣∣
∫

[α−ǫ1,θ′]
P(T ≥ B1α)− Φ

(
−B1

1/2(α− θ)

σ

)
dGn,r(θ)

∣∣∣∣ ≤
2C logB1

B1
{gn,r(α) + 1}. (47)

Now, by similar arguments to those bounding R1 in the proof of Theorem 1, we have that, by a Taylor
expansion about ζ = α, there exists B0 ∈ N, such that, for all B1 > B0 and all θ, ζ ∈ [α− ǫ1, α + ǫ1],

∣∣∣∣Φ
(
B

1/2
1 (α− θ)√
ζ(1− ζ)

)
− Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)∣∣∣∣ ≤ |ζ − α| logB1

2
√
2π{α(1 − α)}3/2

.

Using this bound with ζ = θ, we deduce that, for all B1 sufficiently large and for all θ′ ∈ [α−ǫ1, α+ǫ1],

∣∣∣∣
∫

[α−ǫ1,θ′]
Φ

(
−B1

1/2(α− θ)

σ

)
−Φ

(
−B1

1/2(α− θ)√
α(1− α)

)
dGn,r(θ)

∣∣∣∣

≤ logB1

2
√
2π{α(1 − α)}3/2

∫

[α−ǫ1,α+ǫ1]
|θ − α| dGn,r(θ)

≤ log3 B1

2
√
2π{α(1 − α)}3/2B1

{gn,r(α) + 1}. (48)

Moreover, using the fact that Gn,r is continuously differentiable at α, we have for large B1 and
uniformly for θ′ ∈ [α− ǫ1, α+ ǫ1] that

∫ θ′

α−ǫ1

Φ

(
−B1

1/2(α− θ)√
α(1− α)

)
gn,r(θ) dθ

= gn,r(α)

∫ θ′

α−ǫ1

Φ

(
−B1

1/2(α− θ)√
α(1 − α)

)
dθ +O(B−1

1 log2 B1)

= gn,r(α)

{
(θ′ − α)Φ

(−B
1/2
1 (α− θ′)√
α(1− α)

)
+

√
α(1 − α)

B
1/2
1

φ

(−B
1/2
1 (α− θ′)√
α(1 − α)

)}
+O(B−1

1 log2B1).

(49)

We deduce from (46), (47), (48) and (49) that

∫

[0,1]

∫

[0,θ′]
P(T ′ < B1α)P(T ≥ B1α) dGn,r(θ) dGn,r(θ

′)

= g2n,r(α)

∫ α+ǫ1

α−ǫ1

P(T ′ < B1α)

{
(θ′ − α)Φ

(−B
1/2
1 (α− θ′)√
α(1− α)

)

+

√
α(1− α)

B
1/2
1

φ

(−B
1/2
1 (α− θ′)√
α(1 − α)

)}
dθ′ + o(B−1

1 )

= g2n,r(α)

∫ α+ǫ1

α−ǫ1

Φ

(
B

1/2
1 (α− θ′)√
α(1 − α)

){
(θ′ − α)Φ

(−B
1/2
1 (α− θ′)√
α(1 − α)

)

+

√
α(1− α)

B
1/2
1

φ

(−B
1/2
1 (α− θ′)√
α(1 − α)

)}
dθ′ + o(B−1

1 )

=
α(1 − α)

B1
g2n,r(α)

∫ ∞

−∞
uΦ(u)Φ(−u) + Φ(−u)φ(u) du + o(B−1

1 ) =
α(1− α)

2B1
g2n,r(α) + o(B−1

1 ).
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We conclude that

Var{R(CRP
n )} ≤

{
π0Var1/2

(∫

Rp

1{νn(x)<α} dP0(x)
)
+ π1Var1/2

(∫

Rp

1{νn(x)<α} dP1(x)
)}2

=
{
π0

(α(1 − α)

B1
g2n,0(α)

)1/2
+ π1

(α(1 − α)

B1
g2n,1(α)

)1/2}2
+ o(B−1

1 )

=
α(1 − α)

B1
ḡ2n(α) + o(B−1

1 ),

as required.

10. Further discussion of assumptions

In this section we investigate empirically assumptions 1 and 2 which, unlike assumption 3, depend on
the configuration of the training data pairs.

10.1. Assumption 1

Assumption 1 asks that the distribution functions Gn,0 and Gn,1 are twice differentiable at α. Our
interest here is in showing that the quantity γn(α), which appears in the conclusion of Theorem 1, is
not too large, so that we can regard γn(α)/B1 as negligible for our recommended choice of B1 = 500.

To this end, we approximate γn(α̂) over 100 training datasets generated from Model 2 as follows:
given a training dataset and a set of B1B2 projections with B1 ∈ {50, 51, . . . , 500}, B2 = 50, we
can estimate R(CRP

n ) using an independent test set of size 1000. Taking the average estimate over

10 independent sets of B1B2 projections (with the same training data), yields an estimate R̂B1
of

E{R(CRP
n )} for the different values of B1. We then find the least squares estimator (â, b̂) of (a, b) in

the model R̂B1
∼ a+ b/B1, so that b̂ can be regarded as an approximation to γn(α̂). We took d = 5,

and the cutoff α̂ was chosen via the method discussed in Section 5.1 for B1 = 500, and then kept fixed
as we vary B1.

In Figure 4, we present histograms of these approximations to γn(α̂) over 100 realisations training
data sets of size 50 for p ∈ {100, 1000}. In this case, we see that γn(α̂) is bounded with high probability
by 1 when p = 100. Therefore, the expansion in Theorem 1 gives us a test error approximation within
0.002 of the test error of the infinite-simulation version of the RP ensemble classifier. When p = 1000,
we find that γn(α̂) ≤ 8 with high probability; note that 8/500 < 0.02. For a few realisations of the
training data, we have γn(α̂) < 0; indeed, while for the particular choice α = α∗, we have γn(α

∗) ≥ 0,
there is no reason for γn(α) to be non-negative for all values of α.

10.2. Assumption 2

Assumption 2 asks that there exists β ∈ (0, 1] such that P
(
R

A1,1
n ≤ R∗

n + |ǫn|
)
≥ β. Note that if this

probability were zero, then it would require both that the set of projections on which the minimum
test error estimate is attained had zero Haar measure, and that the method of estimating test error
is exactly unbiased as an estimate of the expected test error.

We can also estimate P
(
R

A1,1
n ≤ R∗

n + |ǫn|
)
empirically as follows:

(a) First, compute the random projection ensemble classifier using B1B2 projections, but after se-

lecting each projection, {Ab1 : b1 = 1, . . . , B1}, we approximate R(C
Ab1
n ) using an independent

validation set of size 1000. Recalling that we also calculate R
Ab1
n when selecting the projections,

let

ǫ̂n :=
1

B1

B1∑

b1=1

{
R(C

Ab1
n )−R

Ab1
n

}
.

(b) Let R̂∗
n := minb1,b2 R

Ab1,b2
n .
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Fig. 4. Histograms of approximations to γn(α̂) constructed as described in Section 10.1 with n = 50, and
p = 100 (top), 1000 (bottom). The base classifiers used were LDA (left), QDA (middle) and knn (right).

(c) Generate a new set of B3 independent projections A′
1, . . . ,A

′
B3

having the same distribution as

A1,1, and estimate P
(
R

A1,1

n ≤ R∗
n + |ǫn|

)
by B−1

3

∑B3

b3=1 1
{
R

A′

b3
n ≤R̂∗

n+|ǫ̂n|
}.

In Figure 5, we present histograms of our estimates of P
(
R

A1,1

n ≤ R∗
n + |ǫn|

)
, constructed via the

procedure above for data simulated from Model 1. The other parameters are n = 50, d = 5, B1 = 500,
B2 = 50 and B3 = 1000. For the LDA base classifier, assumption 2 holds in each of the 100 repeats
of the experiment with β > 3/10. For the QDA and knn base classifier, we find that β > 0.05 with
high probability. The results are stable for the different choices of dimension.

Noting that (1 − 1/20)50 ≈ 0.077 while (1 − 1/20)100 ≈ 0.006, the bound in Theorem 3 suggests
that we should choose B2 to be slightly larger than 50 in this case. Moreover, |ǫn| typically increases
with B2 as well, which gives larger values of β. However, as discussed in Section 11, we found that in
practice choosing B2 = 50 was sufficient, and little was gained by increasing it further.

11. Choice of B1 and B2

Here we elaborate on the discussion in Section 5.3 of the main text. In Figures 6 and 7, we present the
risk of the random projection ensemble classifier with LDA, QDA and knn base classifiers for different
values of B1 and B2 for data simulated from Model 2 (cf. Section 6.1.2 of the main text). We see
that, as we expect from our theoretical results, the risk decreases as we increase B1 and B2. In fact,
increasing B1 has a greater effect than increasing B2, and it was this observation (which was also
observed in other settings) that informed our recommendation of B1 = 500 and B2 = 50 as sensible
default values.

12. Further simulation results

Here we present the remaining simulation results: the model numbers refer to those in Section 6.1 of the
main text, with the covariance matrix Σ in Model 1 when p = 1000 given by diag(1, 1, 1/16, . . . , 1/16).
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Fig. 5. Histograms of estimates of P
(
R

A1,1
n ≤ R∗

n + |ǫn|
)

constructed as described in Section 10.2 over 100
simulated training datasets from Model 1, with n = 50, and p = 100 (top), 1000 (bottom). The base classifiers
used were LDA (left), QDA (middle) and knn (right).

Tables 7 and 8 examine cases of unbalanced priors, where π1 = 0.66. In Tables 9 and 10, we
present the results when the dimension of the feature space is p = 1000 and where we project into
either d = 5 or d = 10 dimensions. The results are consistent with the conclusions drawn in Section 6.3
of the main text.

13. Computational timings

In Section 5.1 of the main text, we discuss the computational complexity of the random projection
ensemble classifier and the scope for incorporating parallel computing. We plot the average run times
for our classifier as we vary the number of processors used in Figure 8, which reveals that it is possible
to significantly speed up the procedure using multiple CPUs.

In Table 11, we compare the running time of the random projection ensemble classifier with
the alternative methods considered with data from Model 2. For the random projection ensemble
classifiers, we used B1 = 500 and B2 = 50, and present the elapsed time running parallelised code
on 50 Intel

R©
CoreTM i5-4690 CPU @ 3.50GHz [4 CPU] machines with n ∈ {50, 200, 1000} and p ∈

{100, 1000}. For the comparators, we present the elapsed time on one such machine, though in some
cases, these times could also be reduced through parallel computing. The code is written in R and
makes use of the parallel package¶. Our R package RPEnsemble (Cannings and Samworth, 2016)
makes it straightforward for the user to set up a computing cluster on which to run the RP procedure
in parallel.

Our method is typically slower for the small sample size and dimension, but it scales well with
both n and p. For instance, when n increases from 50 to 1000 with p = 100 for the LDA and QDA
classifiers, the computational cost only increases by a factor of about 3. Similarly, when n = 200, and
we increase p from 100 to 1000, the run time increases by a factor of less than 5.

¶see https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
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Fig. 6. Risk estimates of the random projection ensemble classifier for Model 2 with n = 100 (left), n = 1000
(right), p = 1000, π1 = 0.5. The base classifier is LDA (top), QDA (middle) and knn (bottom) and we set d = 5.
Here, B1 varies from 2 to 500 on the x-axis, with B2 = 1 (black), 10 (red), 25 (blue), 50 (green), 100 (yellow),
250 (orange). The risk was estimated as the average of 100 repeats of the experiment, with an independent
test set of size 1000 in each run.
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Fig. 7. Risk estimates of the random projection ensemble classifier for Model 2 with n = 100 (left), n = 1000
(right), p = 1000, π1 = 0.5. The base classifier is LDA (top), QDA (middle) and knn (bottom) and we set d = 5.
Here, B2 varies from 1 to 250 on the x-axis, with B1 = 1 (black), 10 (red), 25 (blue), 50 (green), 100 (yellow),
250 (orange) and 500 (purple). The risk was estimated as the average of 100 repeats of the experiment, with
an independent test set of size 1000 in each run.
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Table 7. Misclassification rates for Models 1 and 2, with p = 100 and π1 = 0.66.

Model 1, Bayes risk = 4.15 Model 2, Bayes risk = 3.67
n 50 200 1000 50 200 1000

RP-LDA2 46.910.71 34.610.31 34.050.22 7.490.29 5.030.11 4.690.10

RP-LDA5 47.030.65 40.050.61 34.050.22 6.920.20 5.030.11 4.670.10

RP-QDA2 40.490.67 33.540.31 32.000.58 7.160.25 4.960.11 4.730.10
RP-QDA5 36.140.55 22.520.40 12.170.17 7.570.25 5.180.13 4.610.10

RP-knn2 39.530.65 33.020.42 32.030.52 7.860.31 5.180.11 4.760.10
RP-knn5 40.790.62 28.210.56 12.300.33 7.760.26 5.370.16 4.690.10

LDA N/A 45.740.26 39.260.24 N/A 12.710.21 5.500.11
QDA N/A N/A 26.880.23 N/A N/A 18.080.25
knn 30.570.32 23.230.26 17.100.23 12.950.29 8.840.16 6.910.13
RF 36.060.43 34.370.21 34.030.22 12.550.42 7.610.16 6.040.11
Radial SVM 34.860.43 34.110.20 34.050.22 30.520.76 12.240.42 6.010.12
Linear SVM 44.660.39 44.480.25 34.050.22 8.330.20 7.890.16 7.070.13
Radial GP 35.100.38 33.990.21 31.440.22 19.760.74 8.290.19 5.030.10
PenLDA 42.660.41 41.830.28 38.020.23 10.070.54 5.880.17 5.170.12
NSC 36.560.42 34.420.21 34.050.22 12.010.64 6.440.22 5.250.12
PenLog 36.280.53 34.770.26 35.050.23 10.600.22 7.050.14 5.420.10
SDR5-LDA N/A 37.800.48 35.310.30 N/A 13.370.23 5.660.10
SDR5-knn N/A 32.220.71 21.831.08 N/A 16.570.26 7.120.12
OTE 39.600.51 31.920.70 15.521.03 17.880.44 11.620.24 8.560.15
ESknn 43.620.47 43.510.47 44.040.46 35.520.59 33.310.62 32.300.55

Table 8. Misclassification rates for Model 3 and 4, with p = 100 and π1 = 0.66.

Model 3, Bayes risk = 1.05 Model 4, Bayes risk = 10.93
n 50 200 1000 50 200 1000

RP-LDA2 53.481.59 34.100.21 34.020.22 40.050.64 34.720.27 34.080.23
RP-LDA5 59.140.81 37.270.89 34.020.22 44.280.52 37.750.38 34.200.23
RP-QDA2 15.760.91 13.831.16 23.961.38 38.800.80 44.100.65 46.660.49
RP-QDA5 13.750.88 4.650.13 3.680.09 39.740.60 47.020.49 50.000.31
RP-knn2 21.801.14 9.010.33 7.350.41 29.550.81 20.840.37 16.610.17
RP-knn5 19.310.43 6.180.14 4.100.10 27.600.71 18.670.29 15.800.16
LDA N/A 46.290.24 39.620.22 N/A 34.280.30 30.820.26
QDA N/A N/A 21.420.24 N/A N/A 47.470.22
knn 65.230.20 65.530.22 65.700.21 30.110.53 24.480.32 21.910.21
RF 36.290.39 32.510.27 16.780.33 26.060.57 17.290.22 15.820.17
Radial SVM 32.920.56 22.831.02 3.700.09 34.620.46 33.910.22 34.050.23
Linear SVM 47.790.28 45.370.25 34.020.22 32.950.43 31.330.38 34.560.25
Radial GP 39.720.90 37.370.32 N/A 31.200.62 23.000.30 18.710.17
PenLDA 46.210.32 42.980.25 38.840.21 50.031.19 35.920.75 34.960.23
NSC 37.580.53 34.470.23 34.050.22 35.840.47 34.280.23 34.150.23
PenLog 37.520.60 38.140.33 38.030.23 N/A N/A N/A
SDR5-LDA N/A 46.230.26 39.560.21 N/A 34.890.30 30.790.26
SDR5-knn N/A 46.230.29 34.150.23 N/A 37.980.34 23.910.24
OTE 41.420.46 34.630.26 13.430.20 28.310.61 18.000.25 15.430.17

ESknn 44.790.45 42.740.27 41.120.24 42.260.57 41.220.44 39.540.46
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Table 9. Misclassification rates for Models 1 and 2, with p = 1000 and π1 = 0.5.

Model 1, Bayes risk = 4.45 Model 2, Bayes risk = 4.09
n 50 200 1000 50 200 1000

RP-LDA5 51.840.52 51.230.65 40.170.68 21.340.77 10.200.41 6.660.17
RP-LDA10 51.210.52 52.020.40 44.810.59 20.380.76 8.310.27 5.820.11

RP-QDA5 26.020.67 9.810.25 5.940.12 27.510.79 11.590.42 7.040.17
RP-QDA10 23.640.81 8.000.17 5.440.10 26.230.78 9.620.30 6.170.12
RP-knn5 33.910.81 11.100.33 6.340.12 32.470.75 17.290.63 8.720.24
RP-knn10 27.010.86 8.450.24 5.520.10 31.680.75 16.950.96 8.340.19
knn 9.970.26 6.610.14 5.750.11 31.040.37 21.190.24 14.660.17
RF 49.990.22 49.980.23 49.700.23 34.840.87 16.790.56 9.170.16
Radial SVM 49.940.22 50.010.23 50.080.22 48.510.58 36.031.00 6.750.13
Linear SVM 50.040.23 50.190.23 50.080.21 13.160.39 8.670.13 8.640.13
Radial GP 45.690.63 31.790.68 9.620.20 41.810.80 17.430.63 6.130.12
PenLDA 49.850.22 49.940.23 49.940.22 33.091.14 21.210.96 14.000.62
NSC 49.780.23 49.970.24 49.550.26 37.580.96 25.580.92 16.640.67
PenLog 49.320.39 48.640.56 49.960.33 29.960.61 13.700.19 8.540.12
OTE 49.880.22 48.770.35 42.370.92 35.020.50 22.230.32 17.960.26
ESknn 49.930.21 50.200.23 49.780.23 48.590.29 48.270.28 47.990.28

Table 10. Misclassification rates for Models 3 and 4, with p = 1000 and π1 = 0.5.

Model 3, Bayes risk = 0.00 Model 4, Bayes risk = 6.96
n 50 200 1000 50 200 1000

RP-LDA5 44.361.30 45.521.55 42.121.64 44.740.47 44.330.67 44.090.75
RP-LDA10 41.551.05 45.201.00 44.611.25 44.120.42 40.870.55 42.000.79
RP-QDA5 1.040.35 0.020.01 0.000.00 43.600.35 42.210.23 42.500.24
RP-QDA10 10.071.43 0.010.004 0.000.00 44.170.37 42.090.21 42.440.24
RP-knn5 20.631.81 0.730.14 0.000.00 42.830.53 38.490.43 34.540.32
RP-knn10 31.231.40 0.810.15 0.050.03 44.080.58 39.200.61 36.840.41
knn 50.150.23 50.090.22 49.850.23 48.360.37 47.250.52 48.680.47
RF 47.550.32 18.110.77 0.100.02 40.740.56 27.020.44 21.420.20
Radial SVM 42.031.61 0.000.00 0.000.00 48.370.37 47.220.37 46.740.33
Linear SVM 46.840.26 45.510.23 46.110.23 41.820.42 35.930.35 34.090.38
Radial GP 49.880.24 49.910.23 49.050.24 45.750.45 40.330.71 30.050.46
PenLDA 47.950.29 47.930.31 46.790.29 49.720.32 49.450.29 49.230.26
NSC 47.740.30 46.570.28 45.550.29 49.350.32 48.510.41 48.820.32
PenLog 48.840.29 47.390.25 45.910.24 N/A N/A N/A
OTE 47.850.25 30.790.33 4.460.16 37.660.63 23.850.27 20.860.20

ESknn 49.000.28 46.620.25 45.120.23 48.630.32 48.120.30 47.520.30
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Fig. 8. Average elapsed times (in seconds) for the random projection ensemble classifier with LDA (left), QDA
(middle) and knn (right) for Model 2, with p = 100, n = 50 (black), 200 (red) and 1000 (blue). The other
parameters are d = 5, B1 = 500 and B2 = 50.



44 Timothy I. Cannings and Richard J. Samworth

Table 11. Average elapsed time (in seconds) for Model 2.

p = 100 p = 1000
n 50 200 1000 50 200 1000

RP-LDA5 2.4 3.0 6.3 9.7 12 23
RP-QDA5 2.2 2.7 5.6 9.6 11 22
RP-knn5 2.6 3.4 15 10 13 43
LDA N/A 0.01 0.02 N/A N/A N/A
QDA N/A N/A 0.03 N/A N/A N/A
knn 0.01 0.04 0.51 0.09 0.55 10
RF 0.16 0.60 3.8 0.91 4.9 37
Radial SVM 0.02 0.04 0.23 0.15 0.42 3.8
Linear SVM 0.01 0.02 0.10 0.14 0.33 1.7
Radial GP 0.04 0.10 4.8 0.07 0.15 8.0
PenLDA 0.06 0.09 0.23 0.27 0.44 1.8
NSC 0.13 0.15 0.26 0.20 0.33 1.0
PenLog 0.78 1.4 3.2 3.9 21 130
SDR5-LDA N/A 0.13 1.1 N/A N/A N/A
SDR5-knn N/A 0.14 1.1 N/A N/A N/A
OTE 1.4 3.0 15 4.0 17 140
ESknn 0.11 0.11 0.13 0.14 0.15 0.21
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Rejoinder to ‘Random-projection ensemble classification’

We are very grateful to the discussants for their insightful comments on our work, and are glad to
find a broad consensus that methods based on random projections offer considerable promise for high-
dimensional data analysis. The comments are extremely wide-ranging, and we apologise in advance
for the fact that, due to space limitations, we are unable to address all of them. It is clear, however,
that there is considerable scope for future research in this area, and we look forward to witnessing
and contributing to its development.

Correlation between features
Kent presents an interesting toy example, which focuses on the effect of the correlation between

the features. As we discuss in Figure 1 of the main text, it is usually only sensible to aggregate over
carefully selected (rather than all) projections. Even in Kent’s high correlation case (ρ = 0.99), where
only 5% of projections result in a base classifier with at least half the discriminatory power, we still
expect with B2 = 50 to find such a projection in most blocks. We carried out a small simulation study
on Gaussian class-conditional distributions with π0 = π1 = 1/2:

• Case 1a: p = 2, ρ = 0, µ1 = a1(1, 0)
T , µ0 = a1(−1, 0)T , where a1 is such that the Bayes risk is

14.44%;

• Case 1b: p = 2, ρ = 0.99, µ1 = a2(1,−1)T , µ0 = a2(−1, 1)T , where a2 is such that the Bayes risk
is 14.44%.

In Table 12 we present the misclassification errors for LDA applied to the original data and the random
projection ensemble classifier with d = 1, B1 = 500, B2 = 50, n = 200, and both Gaussian and axis-
aligned projections. We also present the average test error of the LDA classifier applied on the chosen
projections. LDA is tailored to these setups, and indeed it performs very well; the RP-LDA1 classifier
has similar performance in both cases. The extreme correlation (ρ = 0.99) does not greatly affect the
performance of the RP-LDA1 (Gaussian) classifier; in particular, while the high correlation does have
a small effect on the average error base classifier applied on the chosen projections, this is overcome in
the ensemble step. This illustrates what we believe to be the advantage of aggregation over the choice
of a single projection (discussed by Carvalho, Page and Barney).

We now repeat the experiment with p = 100, d = 5, and all other parameters kept as before. The
class-conditional covariance matrices have ones on the diagonal and ρ on the off-diagonal.

• Case 2a: p = 100, ρ = 0, µ1 = a3(1, 0, . . . , 0)
T , µ0 = a3(−1, 0, . . . , 0)T , where a3 is such that

Bayes risk = 14.44%

• Case 2b: p = 100, ρ = 0.99, µ1 = a4(1,−1, 0, . . . , 0)T , µ0 = a4(−1, 1, 0, . . . , 0)T , where a4 is such
that Bayes risk = 14.44%

Here, the sample covariance matrix is ill-conditioned, so LDA performs poorly, and the random
projection ensemble classifier offers considerable improvement. Except in Case 1b, Assumption 3 holds
with an axis-aligned projection. The axis-aligned version performs better here since we restrict the
set of projections, so we have a greater chance of finding good ones. However, in Case 1b there is no
axis-aligned projection that results in a classifier significantly better than a random guess, and the
resulting random projection ensemble classifier is also close to a random guess.

Methodological variations
Many discussants suggested alternatives to our basic methodological proposal. These included

the assignment of weights to the selected projections, based on their empirical performance (Chen
and Shah; Feng; Zhang; Josh, Fan and James), choosing projections via projection pursuit (Janson),
consideration of the underlying algebraic and topological structure (Stehĺık and Střelec), decoupling
rotation and dimension reduction (Blaser and Fryzlewicz) or averaging over class probability estimates
rather than classifiers (Gneiting and Lerch). These are attractive and sensible ideas, though similarly
to Chen and Shah, we found in our experiments that more sophisticated weighting schemes led to
only relatively minor (if any) improvements. One advantage of our proposal is that it is amenable to
theoretical understanding, through the independence of the selected projections, conditional on the
training data. Meanwhile, Tomal, Welch and Zamar highlight their ensemble of phalanxes method,
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Table 12. Misclassification rates for the Gaussian toy example.

Gaussian axis-aligned

LDA RP-LDAd
1

B1

∑B1

b1=1
R(C

Ab1
n ) RP-LDAd

1

B1

∑B1

b1=1
R(C

Ab1
n )

Case 1a 14.20.2 15.10.4 15.30.5 14.20.3 14.20.3
Case 1b 14.80.3 15.30.3 17.60.3 47.10.4 47.10.4
Case 2a 27.10.8 19.70.6 38.40.3 14.90.6 18.00.4
Case 2b 27.70.9 21.60.9 38.80.3 19.40.8 25.10.3

where features are clustered hierarchically into subsets, Casarin, Frattorolo and Rossini and Stander
and Dalla Valle suggest copula-based discriminant analysis and Tong discusses neural network ap-
proaches, which are also attractive but currently seem less amenable to theoretical understanding.

Some contributors discussed the axis-aligned version of our proposal in more detail (Janson;
Ling, Yang and Xue). Another popular alternative was to generate the projections from different
distributions with the aim of finding good projections more efficiently (Blaser and Fryzlewicz; Zhang;
Derenski, Fan and James). Other ideas included choosing new projections to be dissimilar to those
already chosen; either orthogonal (Feng) or by adding some similarity penalty (Lu and Xue). We
remark that, in our experience and in high dimensions, the selected projections tend to be nearly
orthogonal anyway. Thulin suggests including a random rescaling when generating the projections;
on the other hand, both Critchley and Durrant discuss deterministic rescaling or standardising of
the variables. While one could construct examples where such renormalisation would lead to poor
performance, these ideas are certainly worth investigating further.

Our paper focuses on zero-one error loss, where the two types of misclassification are assumed
equally serious. As pointed out by both Hand and Tong and Li, in practice it is often the case that
one type of error is more serious than the other. Suppose now that for some m > 0,

R(C) = π1

∫

Rp

1{C(x)=0} dP1(x) +mπ0

∫

Rp

1{C(x)=1} dP0(x),

so that assigning a class zero observation to class one is m times more serious than the other error.
Three modifications should be made to the methodology. First, the base classifier should target the
misclassification imbalance; for example, for LDA the projected data base classifier would be

CA−LDA
n (x) :=

{
1 if log

(
π̂1

mπ̂0

)
+
(
Ax− µ̂A

1 +µ̂A
0

2

)T
Ω̂A(µ̂A

1 − µ̂A
0 ) ≥ 0,

0 otherwise.

Second, the projections should be selected based on the corresponding weighted estimate (cf. (7) in
the main text), for example using the training error

RA
n :=

1

n1 +mn0

{ ∑

{i:Yi=1}
1{CA

n (Xi)=0} +m
∑

{i:Yi=0}
1{CA

n (Xi)=1}

}
.

Finally, α should be chosen to mimic the weighted version of equation (5), i.e.

α∗ = argmin
α′∈[0,1]

[
π1Gn,1(α

′) +mπ0{1−Gn,0(α
′)}
]
.

Theoretical extensions
Several discussants (Critchley; Fan and Zhu; Feng; Kong; Shi, Song and Lu; Tong and Li; Wang

and Leng) comment on our theoretical assumptions, and in particular the quantity β in our Assump-
tion 2. Since the training data are considered fixed in the corresponding section of the paper, β can
depend on the training data (and therefore n and p). In the online supplement, we show that in
practice we can typically expect Assumption 2 to hold with β not too small. We see in particular
that increasing p does not necessarily lead to β ց 0 (recall that the Johnson–Lindenstrauss Lemma
guarantees that, regardless of the magnitude of p, we can reduce dimension from p to O(log n) while
nearly preserving pairwise distances).
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Table 13. Misclassification rates for the random projection en-
semble classifier for Setup 2 with log preprocessing (B1 = 500,
B2 = 50, Gaussian projections).

RP-LDA5 RP-QDA5 RP-knn5 QCG QCS
q = 1 18.40.9 12.61.6 16.42.2 25.7 21.3
q = 0.1 46.70.7 46.40.6 46.10.5 44.3 41.5

Assumption 3 is at the population level. A natural relaxation is to assume that the oracle
projection A∗ does not perfectly preserve the class information, but instead allow for a region where
the projected classifier disagrees with the Bayes classifier. This can be formalised through the existence
of a projection A∗ ∈ A and τ ≥ 0 such that

PX({x ∈ R
p : η(x) ≥ 1/2}△{x ∈ R

p : ηA
∗

(A∗x) ≥ 1/2}) = τ.

Then, by a straightforward extension to Proposition 2, we have that R(CBayes) ≤ R(CA∗−Bayes) ≤
R(CBayes) + τ .

Bing and Wegkamp suggest a possible alternative approach to our theoretical analysis, which
involves regarding the RP classifier as a plug-in rule with νn(x) + 1/2 − α acting as an estimate
of η(x). We have found that νn(x) is not a good estimate of η(x) (even with the suggested bias
correction), though it would be interesting to find conditions under which we can hope to estimate η
using our RP methodology (cf. Gneiting and Lerch).

Numerical comparisons
We welcome the contributions which added to our numerical work, aiding the understanding of

the practical properties of the random projection ensemble classifier. For instance, Gallaugher and
McNicholas compare with mixture discriminant analysis, while Stander and Dalla Valle apply the
random projection ensemble classifier to a trip advisor dataset.

Hennig and Viroli found that our proposal performed poorly compared with their quantile-based
classifier in two of their setups. In their Setup 2, Class 1 has p independent, log-normal components,
whereas (in the 100q% signal variables case) class 0 has p independent components, qp log-normal
components shifted by 0.2, and (1 − q)p log-normal components. A key characteristic of the data
in this setup is that all variables are skewed and positive. In this example, our Assumption 3 does
not hold for d = 5, and in fact the best low-dimensional projection has high test error (compared
with a Bayes risk of almost zero when q = 1). Nevertheless, we can check for skewness and include a
marginal logarithmic transformation as a preprocessing step in this instance. In Table 13, we present
error rates when data are generated from Hennig and Viroli’s Setup 2 with p = 100, n = 50, and we
take componentwise logarithms of the data before applying the RP methodology. For reference we
also present the performance of the Quantile based methods (QCG, QCS) from Hennig and Viroli’s
discussion. Our transformation works very well when q = 1 (it should be noted that many of the other
methods discussed by Hennig and Viroli may also benefit from this preprocessing). In the case q = 0.1
and when n is this small, the problem is very challenging and all methods struggle; in particular, we
are unable to retain many of the signal projections because our overfitting term ǫn is large.

Bergsma and Jamil only use B1 = 30, B2 = 5 when using the RP methodology in conjunction
with Gaussian process regression with fractional Brownian motion for reasons of computational cost.
We have found that larger values of B1 and B2 give considerably better results, but fortunately simple
(and quick to compute) base classifiers usually suffice. Hand suggests a comparison with a weighted k-
nearest neighbour classifier. One option is the bagged nearest neighbour classifier, which is essentially
a weighted nearest neighbour classifier with geometrically decaying weights (Hall and Samworth, 2005;
Biau and Devroye, 2010). An alternative is to use the optimal weighting scheme, which produces an
asymptotic improvement of 5− 10% in excess risk over the unweighted k-nearest neighbour classifier
when d ≤ 15 (Samworth, 2012). It would be interesting to see if similar improvements are obtained
when used in conjunction with the RP methodology.

Other statistical problems
It was particularly pleasing to see many contributions that discuss using the random projection

ensemble framework to tackle other high-dimensional statistical problems. Several contributors sug-
gested ways in which the information in the chosen projections can be aggregated to provide measures
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Table 14. Misclassification rates for the randomised and se-
lected base classifier variants, with p = 100, n = 200, B1 =
500, B2 = 50, d = 5 and Gaussian projections. For compar-
ison, in the bottom row we present the risk of the best per-
forming version of the random projection ensemble classifier
as seen in Section 6.1 of the main text.

Model 1 Model 2 Model 3 Model 4
RP-Random5 26.20.7 6.00.2 3.60.1 23.60.5
RP-Min5 23.60.7 6.10.3 3.70.2 23.90.6
Best RP 22.320.32 5.580.12 4.230.14 24.020.30

of variable importance (Fortunato, Anderlucci and Montanari; Derenski, Fan and James; Gataric). Li
and Yu, Critchley and Murtagh and Contreas considered clustering (unsupervised learning) problems,
where the labels of the training data are unknown. Here we require both a (sample) measure of the
performance of the base method in order to select the projections analogously to (7) in the main text,
and a suitable method for aggregating the chosen projections. Fan and Zhu discuss the use of random
projections for the estimation of the top k left singular space of a data matrix; the result they state
together with an appropriate version of Wedin’s theorem (Wedin, 1972; Yu, Wang and Samworth,
2015; Wang, 2016) may allow the control of the sine angle distance they seek. Other interesting
new directions discussed include interaction network learning (Demirkaya and Lv), regression (Kong;
Shin, Zheng and Wu), feature detection (Mateu) and estimation of central subspaces in the context
of sufficient dimension reduction (Sabolová and Marriott).

Which random projection ensemble classifier?
We are grateful to Switzer for pointing out two early references to the use of random projections

for classification. As noted by some discussants (Hand; Hennig and Viroli; Critchley), the flexibility
offered by our random projection ensemble classification framework naturally poses the question of
when a particular base classifier should be used (of course, analogous questions arise regardless of
whether methods are used in conjunction with random projections). If no natural choice is suggested
from understanding of the data generating mechanism, one possible approach is to randomise the choice
of base classifier for each projection, say choosing between LDA, QDA and knn, each with probability
1/3. Alternatively, we can try all three base methods on each projection and retain the projection, base
method pair that minimises the leave-one-out error estimate. If one of these three original classifiers is
clearly best, then it should emerge as the ‘winner’ within most blocks of B2 projections. This strategy
therefore provides additional robustness, and the theory goes through unchanged for these versions
of the random projection ensemble classifiers. Post-pruning, as suggested by Fortunato, is another
option, but we do not pursue that here. We implement both methods proposed above (denoted RP-
Randomd and RP-Mind, respectively) in a small simulation study, summarised in Table 3, where the
model numbers refer to the settings described in Section 6.1. For Models 2, 3 and 4, the risks of both
variants of the classifier are comparable to (or better than) that of the best performing choice of base
method. For Model 1 there is only a slight deterioration in performance. Taking these ideas further,
and addressing comments from Bing and Wegkamp, Critchley and Liu and Cheng, one could even add
randomisation over d and/or Gaussian/axis-aligned projections.

Ultrahigh dimensional problems
Tong discusses the applicability of our random projection methodology in contemporary machine

learning problems. He correctly points out that some modern datasets have potentially millions of
features and observations, far larger than the problem sizes we investigate in our numerical studies in
Section 6. Of course, the fact that such large datasets exist does not mean that we should neglect the
(still relevant) smaller problems. Moreover, in ultrahigh-dimensional problems it is often reasonable
to assume that only a subset of the features are relevant. Indeed, many studies of such problems focus
on reducing the data dimension by attempting to screen out the noise variables (e.g. Fan and Lv,
2008; Fan, Samworth and Wu, 2009; Meinshuasen and Bühlmann, 2010; Shah and Samworth, 2013).
If high dimension is still a problem, another common technique is to use a single random projection
(e.g. Achlioptas, 2003) into a lower dimensional space. Either or both these techniques can be used
as a preprocessing step to give thousands, say, rather than millions of features, and then the RP
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methodology can be applied. In fact, in the Dahl et al. (2013) paper cited by Tong, in order to make
the problem more manageable, the authors apply feature screening and a sparse random projection
to reduce dimension to 4000, before applying a neural net classifier.

Responses to direct questions
Gallaugher and McNicholas seek clarification about our real data settings – we used the Hill-Valley

data set without noise, pooled the training and test sets, then subsampled at random our own training
and test sets as described in Section 6.2. The missing values in the Mice dataset were imputed as the
sample average value for that feature for the non-missing entries. Kong asks why the performance
improves as p increases for Model 1. One reason is that, while the signal is the same (the Bayes risk
is 4.45% in both cases), the variance of the noise components is reduced in the higher-dimensional
setting; see also the explanation of Yatracos. In answer to Zhang, penalised logistic regression does
not perform well in Setting 1 because, despite the fact the model is highly sparse (only two features are
relevant for classification), the class boundaries are non-linear. Stander and Dalla Valle ask whether it

is possible to quantify classification uncertainty using CA1
n , . . . , C

AB1
n . Regarding the training data as

fixed and having observed νn(x) = t < α, say, one can indeed obtain a simple bound on the probability
of observing νn(x) at least as small as t when CRP∗

n (x) = 1 (a kind of ‘p-value’), via the fact that
νn(x) ∼ B−1

1 Bin
(
B1, µn(x)

)
.
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