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Abstract

Factor models are a class of powerful statistical models that have been widely used to deal
with dependent measurements that arise frequently from various applications from genomics
and neuroscience to economics and finance. As data are collected at an ever-growing scale,
statistical machine learning faces some new challenges: high dimensionality, strong dependence
among observed variables, heavy-tailed variables and heterogeneity. High-dimensional robust
factor analysis serves as a powerful toolkit to conquer these challenges.

This paper gives a selective overview on recent advance on high-dimensional factor models
and their applications to statistics including Factor-Adjusted Robust Model selection (FarmSe-
lect) and Factor-Adjusted Robust Multiple testing (FarmTest). We show that classical methods,
especially principal component analysis (PCA), can be tailored to many new problems and pro-
vide powerful tools for statistical estimation and inference. We highlight PCA and its connec-
tions to matrix perturbation theory, robust statistics, random projection, false discovery rate,
etc., and illustrate through several applications how insights from these fields yield solutions to
modern challenges. We also present far-reaching connections between factor models and popular
statistical learning problems, including network analysis and low-rank matrix recovery.

Key Words: Factor model, PCA, covariance estimation, perturbation bounds, robustness,
random sketch, FarmSelect, FarmTest

1 Introduction

In modern data analytics, dependence across high-dimensional outcomes or measurements is ubiq-
uitous. For example, stocks within the same industry exhibit significantly correlated returns, hous-
ing prices of a country depend on various economic factors, gene expressions can be stimulated
by cytokines. Ignoring such dependence structure can produce significant systematic bias and
yields inefficient statistical results and misleading insights. The problems are more severe for high-
dimensional big data, where dependence, non-Gaussianity and heterogeneity of measurements are
common.
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Factor models aim to capture such dependence by assuming several variates or “factors”, usu-
ally much fewer than the outcomes, that drive the dependence of the entire outcomes (Lawley and
Maxwell, 1962; Stock and Watson, 2002). Stemming from the early works on measuring human
abilities (Spearman, 1927), factor models have become one of the most popular and powerful tools in
multivariate analysis and have made profound impact in the past century on psychology (Bartlett,
1938; McCrae and John, 1992), economics and finance (Chamberlain and Rothschild, 1982; Fama
and French, 1993; Stock and Watson, 2002; Bai and Ng, 2002), biology (Hirzel et al., 2002; Hochre-
iter et al., 2006; Leek and Storey, 2008), etc. Suppose x1, . . . ,xn are n i.i.d. p-dimensional random
vectors, which may represent financial returns, housing prices, gene expressions, etc. The generic
factor model assumes that

xi = µ+ Bfi + ui, or in matrix form, X = µ1>n + BF> + U, (1)

where X = (x1, . . . ,xn) ∈ Rp×n, µ = (µ1, . . . , µp)
> is the mean vector, B = (b1, . . . ,bp)

> ∈ Rp×K
is the matrix of factor loadings, F = (f1, . . . , fn)> ∈ Rn×K stores K-dimensional vectors of common
factors with Efi = 0, and U = (u1, . . . ,un) ∈ Rp×n represents the error terms (a.k.a. idiosyncratic
components), which has mean zero and is uncorrelated with or independent of F. We emphasize
that, for most of our discussions in the paper (except Section 3.1), only {xi}ni=1 are observable, and
the goal is to infer B and {fi}ni=1 through {xi}ni=1. Here we use the name “factor model” to refer
to a general concept where the idiosyncratic components ui are allowed to be weakly correlated.
This is also known as the “approximate factor model” in the literature, in contrast to the “strict
factor model” where the idiosyncratic components are assumed to be uncorrelated.

Note that the model (1) has identifiability issues: given any invertible matrix R ∈ RK×K ,
simultaneously replacing B with BR and fi with R−1fi does not change the observation xi. To
resolve this ambiguity issue, the following identifiability assumption is usually imposed:

Assumption 1.1 (Identifiability). B>B is diagonal and cov(fi) = Ip.

Other identifiability assumptions as well as detailed discussions can be found in Bai and Li (2012)
and Fan et al. (2013).

Factor analysis is closely related to principal component analysis (PCA), which breaks down the
covariance matrix into a set of orthogonal components and identifies the subspace that explains the
most variation of the data (Pearson, 1901; Hotelling, 1933). In this selective review, we will mainly
leverage PCA, or more generally, spectral methods, to estimate the factors {fi}ni=1 and the loading
matrix B in (1). Other popular estimators, mostly based on the maximum likelihood principle,
can be found in Lawley and Maxwell (1962); Anderson and Amemiya (1988); Bai and Li (2012),
etc. The covariance matrix of xi consists of two components: cov(Bfi) and cov(ui). Intuitively,
when the contribution of the covariance from the error term ui is negligible compared with those
from the factor term Bfi, the top-K eigenspace (namely, the space spanned by top K eigenvectors)
of the sample covariance of {xi}ni=1 should be well aligned with the column space of B. This can
be seen from the assumption that cov(xi) = BB> + cov(ui) ≈ BB>, which occurs frequently in
high-dimensional statistics (Fan et al., 2013).

Here is our main message: applying PCA to well-crafted covariance matrices (including vanilla
sample covariance matrices and their robust version) consistently estimates the factors and loadings,
as long as the signal-to-noise ratio is large enough. The core theoretical challenge is to characterize
how idiosyncratic covariance cov(ui) perturb the eigenstructure of the factor covariance BB>. In
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addition, the situation is more complicated with the presence of heavy-tailed data, missing data,
computational constraints, heterogeneity, etc.

The rest of the paper is devoted to solutions to these challenges and a wide range of appli-
cations to statistical machine learning problems. In Section 2, we will elucidate the relationship
between factor models and PCA and present several useful deterministic perturbation bounds for
eigenspaces. We will also discuss robust covariance inputs for the PCA procedure to guard against
corruption from heavy-tailed data. Exploiting the factor structure of the data helps solve many
statistical and machine learning problems. In Section 3, we will see how the factor models and
PCA can be applied to high-dimensional covariance estimation, regression, multiple testing and
model selection. In Section 4, we demonstrate the connection between PCA and a wide range
of machine learning problems including Gaussian mixture models, community detection, matrix
completion, etc. We will develop useful tools and establish strong theoretical guarantees for our
proposed methods.

Here we collect all the notations for future convenience. We use [m] to refer to {1, 2, . . . ,m}.
We adopt the convention of using regular letters for scalars and using bold-face letters for vectors

or matrices. For x = (x1, . . . , xp)
> ∈ Rp, and 1 ≤ q < ∞, we define ‖x‖q =

(∑p
j=1 |xj |q

)1/q
,

‖x‖0 = |supp(x)|, where supp(x) = {j : xj 6= 0}, and ‖x‖∞ = max1≤j≤p |xj |. For a matrix M,
we use ‖M‖2, ‖M‖F , ‖M‖max and ‖M‖1 to denote its operator norm (spectral norm), Frobenius
norm, entry-wise (element-wise) max-norm, and vector `1 norm, respectively. To be more specific,
the last two norms are defined by ‖M‖max = maxj,k |Mjk| and ‖M‖1 =

∑
j,k |Mjk|. Let Ip denote

the p× p identity matrix, 1p denote the p-dimensional all-one vector, and 1A denote the indicator
of event A, i.e., 1A = 1 if A happens, and 0 otherwise. We use N (µ,Σ) to refer to the normal
distribution with mean vector µ and covariance matrix Σ. For two nonnegative numbers a and b
that possibly depend on n and p, we use the notation a = O(b) and a . b to mean a ≤ C1b for
some constant C1 > 0, and the notation a = Ω(b) and a & b to mean a ≥ C2b for some constant
C2 > 0. We write a � b if both a = O(b) and a = Ω(b) hold. For a sequence of random variables
{Xn}∞n=1 and a sequence of nonnegative deterministic numbers {an}∞n=1, we write Xn = OP(an) if
for any ε > 0, there exists C > 0 and N > 0 such that P(|Xn| ≥ Can) ≤ ε holds for all n > N ; and
we write Xn = oP(an) if for any ε > 0 and C > 0, there exists N > 0 such that P(|Xn| ≥ Can) ≤ ε
holds for all n > N . We omit the subscripts when it does not cause confusion.

2 Factor models and PCA

2.1 Relationship between PCA and factor models in high dimensions

Under model (1) with the identifiability condition, Σ = cov(xi) is given by

Σ = BB> + Σu, Σu = (σu,jk)1≤j,k≤p = cov(ui). (2)

Intuitively, if the magnitude of BB> dominates Σu, the top-K eigenspace of Σ should be ap-
proximately aligned with the column space of B. Naturally we expect a large gap between the
eigenvalues of BB> and Σu to be important for estimating the column space of B through PCA
(see Figure 1). On the other hand, if this gap is small compared with the eigenvalues of Σu, it is
known that PCA leads to inconsistent estimation (Johnstone and Lu, 2009). The above discussion
motivates a simple vanilla PCA-based method for estimating B and F as follows (assuming the
Identifiability Assumption).
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Step 1. Obtain an estimator µ̂ and Σ̂ of µ and Σ, e.g., the sample mean and covariance matrix
or their robust versions.

Step 2. Compute the eigen-decomposition of Σ̂ =
∑p

j=1 λ̂jv̂jv̂
>
j . Let {λ̂k}Kk=1 be the top K

eigenvalues and {v̂k}Kk=1 be their corresponding eigenvectors. Set V̂ = (v̂1, . . . , v̂K) ∈ Rp×K and

Λ̂ = diag(λ̂1, . . . , λ̂K) ∈ RK×K .

Step 3. Obtain PCA estimators B̂ = V̂Λ̂1/2 and F̂ = (X− µ̂1>)>V̂Λ̂−1/2, namely, B̂ consists
of the top-K rescaled eigenvectors of Σ̂ and f̂i is just the rescaled projection of xi − µ̂ onto the
space spanned by the eigen-space: f̂i = Λ̂−1/2V̂T (xi − µ̂).
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Figure 1: The left panel is the histogram of the eigenvalue distribution from a synthetic dataset.
Fix n = 1000, p = 400 and K = 2 and let all the entries of B be i.i.d. Gaussian N (0, 1/4). Each
entry of F and U is generated from i.i.d. N (0, 1) and i.i.d. N (0, 52) respectively. The data matrix
X is formed according to the factor model (1). The right diagram illustrates the Pervasiveness
Assumption.

Let us provide some intuitions for the estimators in Step 3. Recall that bj is the jth column
of B. Then, by model (1), B>(xi − µ) = B>Bfi + B>ui. In the high-dimensional setting, the
second term is averaged out when ui is weakly dependent across its component. This along with
the identifiability condition delivers that

fi ≈ diag(B>B)−1B>(xi − µ) = diag(‖b1‖2, · · · , ‖bK‖2)−1B>(xi − µ). (3)

Now, we estimate BB> by
∑K

j=1 λ̂jv̂jv̂
>
j and hence bj by λ̂

1/2
j v̂j and ‖bj‖2 by λ̂j . Using the

substitution method, we obtain the estimators in Step 3.
The above heuristic also reveals that the PCA-based methods work well if the effect of the

factors outweighs the noise. To quantify this, we introduce a form of Pervasiveness Assumption
from the factor model literature. While this assumption is strong1, it simplifies our discussion and
captures the above intuition well: it holds when the factor loadings {bj}pj=1 are random samples
from a nondegenerate population (Fan et al., 2013).

1There is a weaker assumption, under which (1) is usually called the weak factor model; see Onatski (2012).
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Assumption 2.1 (Pervasiveness). The first K eigenvalues of BB> have order Ω(p), whereas
‖Σu‖2 = O(1).

Note that cov(fi) = IK under the Identifiability Assumption 1.1. The first part of this assump-
tion holds when each factor influences a non-vanishing proportion of outcomes. Mathematically
speaking, it means that for any k ∈ [K] := {1, 2, . . . ,K}, the average of squared loadings of the
kth factor satisfies p−1

∑p
j=1B

2
jk = Ω(1) (right panel of Figure 1). This holds with high proba-

bility if, for example, {Bjk}pj=1 are i.i.d. realizations from a non-degenerate distribution, but we
will not make such assumption in this paper. The second part of the assumption is reasonable,
as cross-sectional correlation becomes weak after we take out the common factors. Typically, if
Σu is a sparse matrix, the norm bound ‖Σu‖2 = O(1) holds; see Section 3.1 for details. Under
this Pervasiveness Assumption, the first K eigenvalues of Σ will be well separated with the rest of
eigenvalues. By the Davis-Kahan theorem (Davis and Kahan, 1970), which we present as Theorem
2.1, we can consistently estimate the column space of B through the top-K eigenspace of Σ. This
explains why we can apply PCA to factor model analysis (Fan et al., 2013).

Though factor models and PCA are not identical (see Jolliffe, 1986), they are approximately the
same for high-dimensional problems with the pervasiveness assumption(Fan et al., 2013). Thus,
PCA-based ideas are important components of estimation and inference for factor models. In
later sections (especially Section 4), we discuss statistical and machine learning problems with
factor-model-type structures. There PCA is able to achieve consistent estimation even when the
Pervasiveness Assumption is weakened—and somewhat surprisingly—PCA can work well down to
the information limit. For perspectives from random matrix theory, see Baik et al. (2005); Paul
(2007); Johnstone and Lu (2009); Benaych-Georges and Nadakuditi (2011); O’Rourke et al. (2016);
Wang and Fan (2017), among others.

2.2 Estimating the number of factors

In high-dimensional factor models, if the factors are unobserved, we need to choose the number
of factors K before estimating the loading matrix, factors, etc. The number K can be usually
estimated from the eigenvalues of the the sample covariance matrix or its robust version. With
certain conditions such as separation of the top K eigenvalues from the others, the estimation is
consistent. Classical methods include likelihood ratio tests (Bartlett, 1950), the scree plot (Cattell,
1966), parallel analysis (Horn, 1965), etc. Here, we introduce a few recent methods: the first one is
based on the eigenvalue ratio, the second on eigenvalue differences, and the third on the eigenvalue
magnitude.

For simplicity, let us use the sample covariance and arrange its eigenvalues in descending order:
λ1 ≥ λ2 ≥ · · · ≥ λn∧p, where n ∧ p = min{n, p} (the remaining eigenvalues, if any, are zero).

Lam and Yao (2012) and Ahn and Horenstein (2013) proposed an estimator K̂1 based on ratios of
consecutive eigenvalues. For a pre-determined kmax, the eigenvalue ratio estimator is

K̂1 = argmax
i≤kmax

λi
λi+1

.

Intuitively, when the signal eigenvalues are well separated from the other eigenvalues, the ratio at
k = K should be large. Under some conditions, the consistency of this estimator, which does not
involve complicated tuning parameters, is established.
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In an earlier work, Onatski (2010) proposed to use the differences of consecutive eigenvalues.
For a given δ > 0 and pre-determined integer kmax, define

K̂2(δ) = max{i ≤ kmax : λi − λi+1 ≥ δ}.

Using a result on eigenvalue empirical distribution from random matrix theory, Onatski (2010)
proved consistency of K̂2(δ) under the Pervasiveness Assumption. The intuition is that, the Per-
vasiveness Assumption implies that λK − λK+1 tends on ∞ in probability as n → ∞; whereas
λi− λi+1 → 0 almost surely for K < i < kmax because these λi-s converge to the same limit, which
can be determined using random matrix theory. Onatski (2010) also proposed a data-driven way
to determine δ from the empirical eigenvalue distribution of the sample covariance matrix.

A third possibility is to use an information criterion. Define

V (k) =
1

np
min

B̂∈Rp×k,F̂∈Rn×k
‖X− µ̂1>n − B̂F̂>‖2F = p−1

∑
j>k

λj ,

where µ̂ is the sample mean, and the equivalence (second equality) is well known. For a given k,
V (k) is interpreted as the scaled sum of squared residuals, which measures how well k factors fit the
data. A very natural estimator K̂3 is to find the best k ≤ kmax such that the following penalized
version of V (k) is minimized (Bai and Ng, 2002):

PC(k) = V (k) + k σ̂2g(n, p), where g(n, p) :=
n+ p

np
log

(
np

n+ p

)
,

and σ̂2 is any consistent estimate of (np)−1
∑n

i=1

∑d
j=1 Eu2

ji. The upper limit kmax is assumed to
be no smaller than K, and is typically chosen as 8 or 15 in empirical studies in Bai and Ng (2002).
Consistency results are established under more general choices of g(n, p).

We conclude this section by remarking that in general, it is impossible to consistently estimate
K if the smallest nonzero eigenvalue B>B is much smaller than ‖Σu‖2, because the ‘signals’
(eigenvalues of B>B) would not be distinguishable from the the noise (eigenvalues of UU>). As
mentioned before, consistency of PCA is well studied in the random matrix theory literature. See
Dobriban (2017) for a recent work that justifies parallel analysis using random matrix theory.

2.3 Robust covariance inputs

To extract latent factors and their factor loadings, we need an initial covariance estimator. Given
independent observations x1, . . . ,xn with mean zero, the sample covariance matrix, namely Σ̂sam :=
n−1

∑n
i=1 xix

>
i , is a natural choice to estimate Σ ∈ Rp×p. The finite sample bound on ‖Σ̂sam−Σ‖2

has been well studied in the literature (Vershynin, 2010; Tropp, 2012; Koltchinskii and Lounici,
2017). Before presenting the result from Vershynin (2010), let us review the definition of sub-
Gaussian variables.

A random variable ξ is called sub-Gaussian if ‖ξ‖ψ2 ≡ supq≥1 q
−1/2(E|ξ|q)1/q is finite, in which

case this quantity defines a norm ‖ · ‖ψ2 called the sub-Gaussian norm. Sub-Gaussian variables
include as special cases Gaussian variables, bounded variables, and other variables with tails similar
to or lighter than Gaussian tails. For a random vector ξ, we define ‖ξ‖ψ2 := sup‖v‖2=1 ‖ξ>v‖ψ2 ;
we call ξ sub-Gaussian if ‖ξ‖ψ2 is finite.
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Theorem 2.1. Let Σ be the covariance matrix of xi. Assume that {Σ−
1
2 xi}ni=1 are i.i.d. sub-

Gaussian random vectors, and denote κ = sup‖v‖2=1 ‖x>i v‖ψ2. Then for any t ≥ 0, there exist
constants C and c only depending on κ such that

P
(
‖Σ̂sam −Σ‖2 ≥ max(δ, δ2)‖Σ‖2

)
≤ 2 exp(−ct2), (4)

where δ = C
√
p/n+ t/

√
n.

Remark 2.1. The spectral-norm bound above depends on the ambient dimension p, which can be
large in high-dimensional scenarios. Interested readers can refer to Koltchinskii and Lounici (2017)
for a refined result that only depends on the intrinsic dimension (or effective rank) of Σ.

An important asepect of the above result is the sub-Gaussian concentration in (4), but this
depends heavily on the sub-Gaussian or sub-exponential behaviors of observed random vectors.
This condition can not be validated in high dimensions when tens of thousands of variables are
collected. See Fan et al. (2016b). When the distribution is heavy-tailed2, one cannot expect sub-
Gaussian or sub-exponential behaviors of the sample covariance in the spectral norm (Catoni, 2012).
See also Vershynin (2012) and Srivastava and Vershynin (2013). Therefore, to perform PCA for
heavy-tailed data, the sample covariance is not a good choice to begin with. Alternative robust
estimators have been constructed to achieve better finite sample performance.

Catoni (2012), Fan et al. (2017b) and Fan et al. (2016b) approached the problem by first
considering estimation of a univariate mean µ from a sequence of i.i.d random variables X1, · · · , Xn

with variance σ2. In this case, the sample mean X̄ provides an estimator but without exponential
concentration. Indeed, by Markov inequality, we have P(|X̄ − µ| ≥ tσ/

√
n) ≤ t−2, which is tight

in general and has a Cauchy tail (in terms of t). On the other hand, if we truncate the data
X̃i = sign(Xi) min(|Xi|, τ) with τ � σ

√
n and compute the mean of the truncated data, then we

have (Fan et al., 2016b)

P
(∣∣ 1
n

n∑
i=1

X̃i − µ
∣∣ ≥ t σ√

n

)
≤ 2 exp(−ct2),

for a universal constant c > 0. In other words, the mean of truncated data with only a finite
second moment behaves very much the same as the sample mean from the normal data: both
estimators have Gaussian tails (in terms of t). This sub-Gaussian concentration is fundamental in
high-dimensional statistics as the sample mean is computed tens of thousands or even millions of
times.

As an example, estimating the high-dimensional covariance matrix Σ = (σij) involves O(p2)
univariate mean estimation, since the covariance can be expressed as an expectation: as σij =
E(XiXj) − E(Xi)E(Xj). Estimating each component by the truncated mean yields a covariance

matrix Σ̃. Assuming the fourth moment is bounded (as the covariance itself are second moments),
by using the union bound and the above concentration inequality, we can easily obtain

P
(
‖Σ̃−Σ‖max ≥

√
a log p

c′n

)
. p2−a

2Here, we mean it has second bounded moment when estimating the mean and has bounded fourth moment when
estimating the variance.
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for any a > 0 and a constant c′ > 0. In other words, with truncation, when the data have merely
bounded fourth moments, we can achieve the same estimation rate as the sample covariance matrix
under the Gaussian data.

Fan et al. (2016b) and Minsker (2016) independently proposed shrinkage variants of the sample
covariance with sub-Gaussian behavior under the spectral norm, as long as the fourth moments of
X are finite. For any τ ∈ R+, Fan et al. (2016b) proposed the following shrinkage sample covariance
matrix

Σ̂s(τ) =
1

n

n∑
i=1

x̃ix̃
>
i , x̃i := (‖xi‖4 ∧ τ)xi/‖xi‖4, (5)

to estimate Σ, where ‖ · ‖4 is the `4-norm. The following theorem establishes the statistical error
rate of Σ̃s(τ) in terms of the spectral norm.

Theorem 2.2. Suppose E(v>xi)
4 ≤ R for any unit vector v ∈ Sp−1. Then it holds that for any

δ > 0,

P
(
‖Σ̂s(τ)−Σ‖2 ≥

√
δRp log p

n

)
≤ p1−Cδ, (6)

where τ �
(
nR/(δ log p)

)1/4
and C is a universal constant.

Applying PCA to the robust covariance estimators as described above leads to more reliable
estimation of principal eigenspaces in the presence of heavy-tailed data.

In Theorem 2.2, we assume that the mean of xi is zero. When this does not hold, a natural
estimator of Σ = 1

2E(x1 − x2)(x1 − x2)> is to use the shrunk U -statistic (Fan et al., 2017a):

Σ̂U (τ) =
1

2
(
n
2

)∑
j 6=k

ψτ (‖xj − xk‖22)

‖xj − xk‖22
(xj − xk)(xj − xk)

>

=
1

2
(
n
2

)∑
j 6=k

min
(
1, τ/‖xj − xk‖22

)
(xj − xk)(xj − xk)

>,

where ψτ (u) = (|u| ∧ τ)sign(u). When τ = ∞, it reduces to the usual U -statistics. It possesses a
similar concentration property to that in Theorem 2.2 with a proper choice of τ .

2.4 Perturbation bounds

In this section, we introduce several perturbation results on eigenspaces, which serve as fundamental
technical tools in factor models and related learning problems. For example, in relating the factor
loading matrix B to the principal components of covariance matrix Σ in (2), one can regard Σ as a
perturbation of BB> by an amount of Σu and take A = BB> and Ã = Σ in Theorem 2.3 below.
Similarly, we can also regard a covariance matrix estimator Σ̂ as a perturbation of Σ by an amount
of Σ̂−Σ.

We will begin with a review of the Davis-Kahan theorem (Davis and Kahan, 1970), which is
usually useful for deriving `2-type bounds (which includes spectral norm bounds) for symmetric
matrices. Then, based on this classical result, we introduce entry-wise (`∞) bounds, which typically
give refined results under structural assumptions. We also derive bounds for rectangular matrices
that are similar to Wedin’s theorem (Wedin, 1972). Several recent works on this topic can be found
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in Yu et al. (2014); Fan et al. (2018b); Koltchinskii and Xia (2016); Abbe et al. (2017); Zhong
(2017); Cape et al. (2017); Eldridge et al. (2017).

First, for any two subspaces S and S̃ of the same dimensionK in Rp, we choose any V, Ṽ ∈ Rp×K
with orthonormal columns that span S and S̃, respectively. We can measure the closeness between
two subspaces though the difference between their projectors:

d2(S, S̃) = ‖ṼṼ> −VV>‖2 or dF (S, S̃) = ‖ṼṼ> −VV>‖F .

The above definitions are both proper metrics (or distances) for subspaces S and S̃ and do not
depend on the specific choice of V and Ṽ, since ṼṼ> and VV> are projection operators. Impor-
tantly, these two metrics are connected to the well-studied notion of canonical angles (or principal
angles). Formally, let the singular values of Ṽ>V be {σk}Kk=1, and define the canonical angles
θk = cos−1 σk for k = 1, . . . ,K. It is often useful to denote the sine of the canonical (principal)
angles by sin Θ(V̂,V) := diag(sin θ1, . . . , sin θK) ∈ RK×K , which can be interpreted as a general-
ization of sine of angles between two vectors. The following identities are well known (Stewart and
Sun, 1990).

‖ sin Θ(Ṽ,V)‖2 = d2(S, S̃),
√

2‖ sin Θ(Ṽ,V)‖F = dF (S, S̃).

In some cases, it is convenient to fix a specific choice of Ṽ and V. It is known that for both
Frobenius norm and spectral norm,

‖ sin Θ(Ṽ,V)‖ ≤ min
R∈O(K)

‖ṼR−V‖ ≤
√

2 ‖ sin Θ(Ṽ,V)‖,

where O(K) is the space of orthogonal matrices of size K ×K. The minimizer (best rotation of
basis) can be given by the singular value decomposition (SVD) of Ṽ>V. For details, see Cape et al.
(2017) for example.

Now, we present the Davis-Kahan sin θ theorem (Davis and Kahan, 1970).

Theorem 2.3. Suppose A, Ã ∈ Rn×n are symmetric, and that V, Ṽ ∈ Rn×K have orthonormal
column vectors which are eigenvectors of A and Ã respectively. Let L(V) be the set of eigenvalues
corresponding to the eigenvectors given in V, and let L(V⊥) (respectively L(Ṽ⊥)) be the set of
eigenvalues corresponding to the eigenvectors not given in V (respectively Ṽ). If there exists an
interval [α, β] and δ > 0 such that L(V) ⊂ [α, β] and L(Ṽ⊥) ⊂ (−∞, α− δ]∪ [β+ δ,+∞), then for
any orthogonal-invariant norm3

‖ sin Θ(Ṽ,V)‖ ≤ δ−1 ‖(Ã−A)V‖.

This theorem can be generalized to singular vector perturbation for rectangular matrices; see
Wedin (1972). A slightly unpleasant feature of this theorem is that δ depends on the eigenvalues of
both A and Ã. However, with the help of Weyl’s inequality, we can immediately obtain a corollary
that does not involve the eigenvalues of Ã. Let λj(·) denote the jth largest eigenvalue of a real
symmetric matrix. Recall that Weyl’s inequality bounds the differences between the eigenvalues of
A and Ã:

max
1≤j≤n

∣∣∣λj(Ã)− λj(A)
∣∣∣ ≤ ‖Ã−A‖2. (7)

3A norm ‖ · ‖ is orthogonal-invariant if ‖U>BV‖ = ‖B‖ for any matrix B and any orthogonal matrices U and
V.
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This inequality suggests that, if the eigenvalues in L(Ṽ⊥) have the same ranks (in descending order)
as those in L(V⊥), then L(Ṽ⊥) and L(V⊥) are similar. Below we state our corollary, whose proof
is in the appendix.

Corollary 2.1. Assume the setup of the above theorem, and suppose the eigenvalues in L(Ṽ) have
the same ranks as those in L(V). If L(V) ⊂ [α, β] and L(V⊥) ⊂ (−∞, α− δ0] ∪ [β + δ0,+∞) for
some δ0 > 0, then

‖ sin Θ(Ṽ,V)‖2 ≤ 2δ−1
0 ‖Ã−A‖2.

We can then use ‖ sin Θ(Ṽ,V)‖F ≤
√
K ‖ sin Θ(Ṽ,V)‖2 to obtain a bound under the Frobenius

norm. In the special case where L(V) = {λ} and V = v, Ṽ = ṽ reduce to vectors, we can choose
α = β = λ, and the above corollary translates into

min
s∈{±1}

‖v̂ − sv‖2 ≤
√

2 sin θ(v̂,v) ≤ 2
√

2 δ−1
0 ‖Ã−A‖2. (8)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0 1000 2000 3000 4000 5000

entry index

v2
*

v2

Entries of the eigenvector v2 in SBM

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.05

0.00

0.05

−0.06 −0.04 −0.02

First coordinate

S
ec

on
d 

co
or

di
na

te
stocks

●

●

Apple
Microsoft
IBM
Morgan Stanley
Citi
JP Morgan
Others

PCA of Stocks from S&P500

Figure 2: The left plot shows the entries (coordinates) of the second eigenvectors v2 computed
from the adjacency matrix from the SBM with two equal-sized blocks (n = 5000,K = 2). The
plot also shows the expectation counterpart v∗2, whose entries have the same magnitude O(1/

√
n).

The deviation of v2 from v∗2 is quite uniform, which is a phenomenon not captured by the Davis-
Kahan’s theorem. The right plot shows the coordinates of two leading eigenvectors of the sample
covariance matrix calculated from 2012–2017 daily return data of 484 stocks (tiny black dots). We
also highlight six stocks during three time windows (2012–2015, 2013–2016, 2014–2017) with big
markers, so that the fluctuation/perturbation is shown. The magnitude of these coordinates is
typically small, and the fluctuation is also small.

We can now see that the factor model and PCA are approximately the same with sufficiently
large eigen-gap. Indeed, under Identifiability Assumption 1.1, we have Σ = BB> + Σu. Applying
Weyl’s inequality and Corollary 2.1 to BB> (as A) and Σ (as Ã), we can easily control the
eigenvalue/eigenvector differences by ‖Σu‖2 and the eigengap, which is comparably small under
Pervasiveness Assumption 2.1. This difference can be interpreted as the bias incurred by PCA on
approximating factor models.
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Furthermore, given any covariance estimator Σ̂, we can similarly apply the above results by
setting A = Σ and Ã = Σ̂ to bound the difference between the estimated eigenvalues/eigenvectors
and the population counterparts. Note that the above corollary gives us an upper bound on the
subspace estimation error in terms of the ratio ‖Σ̂−Σ‖2/δ0.

Next, we consider entry-wise bounds on the eigenvectors. For simplicity, here we only consider
eigenvectors corresponding to unique eigenvalues rather than the general eigenspace. Often, we want
to have a bound on each entry of the eigenvector difference ṽ−v, instead of an `2 norm bound, which
is an average-type result. In many cases, none of these entries has dominant perturbation, but the
Davis-Kahan’s theorem falls short of providing a reasonable bound (the näıve bound ‖ · ‖∞ ≤ ‖ · ‖2
gives a suboptimal result).

Some recent papers (Abbe et al., 2017) have addressed this problem, and in particular, entry-
wise bounds of the following form are established.

|[ṽ − v]m| . µ
‖Ã−A‖2

δ0
+ small term, ∀ m ∈ [n],

where µ ∈ [0, 1] is related to the structure of the statistical problem and typically can be as small
as O(1/

√
n), which is very desirable in high-dimensional setting. The small term is often related

to independence pattern of the data, which is typically small under mild independence conditions.
We illustrate this idea in Figure 2 through a simulated data example (left) and a real data

example (right), both of which have factor-type structure. For the left plot, we generated a network
data according to the stochastic block model with K = 2 blocks (communities), each having nodes
n/2 = 2500: the adjacency matrix that represents the links between nodes is a symmetric matrix,
with upper triangular elements generated independently from Bernoulli trials (diagonal elements
are taken as 0), with the edge probability 5 log n/n for two nodes within blocks and log n/(4n)
otherwise. Our task is to classify (cluster) these two communities based on the adjacency matrix.
We used the second eigenvector v2 ∈ R5000 (that is, corresponding to the second largest eigenvalue)
of the adjacency matrix as a classifier. The left panel of Figure 2 represents the values of the 5000
coordinates (or entries) [v2]i in the y-axis against the indices i = 1, . . . , 5000 in the x-axis. For
comparison, the second eigenvector v∗2 ∈ R5000 of the expectation of the adjacency matrix—which
is of interest but unknown—have entries taking values only in {±1/

√
5000}, depending on the

unknown nature of which block a vertex belongs to (this statement is not hard to verify). We
used the horizontal line to represent these ideal values: they indicate exactly the membership of
each vertex. Clearly, the magnitude of entry-wise perturbation is O(1/

√
n). Therefore, we can

use sign(v2)/
√

5000 as an estimate of v∗ and classify all nodes with the same sign as the same
community. See Section 4.2 for more details.

For the right plot, we used daily return data of stocks that are constituents of S&P 500 index
from 2012.1.1–2017.12.31. We considered stocks with exactly n = 1509 records and excluded stocks
with incomplete/missing values, which resulted in p = 484 stocks. Then, we calculated the sample
covariance matrix Σ̂sam ∈ Rp×p using the data in the entire period, and computed two leading
eigenvectors (note that they span the column space of B) and plotted the coordinates (entries)
using small dots. Stocks with an coordinate smaller than 5% quantile or larger than 95% quantile
are potentially outlying values and are not shown in the plot. In addition, we also highlighted the
fluctuation of six stocks during three time windows: 2012.1–2015.12, 2013.1–2016.12 and 2014.1–
2017.12, with different big markers. That is, for each of the three time windows, we re-computed
the covariance matrices and the two leading eigenvectors, and then highlighted coordinates that

11



correspond to the six major stocks. Clearly, the magnitude for these stocks is small, which is
roughly O(1/

√
p), and the fluctuation of coordinates is also very small. Both plots suggest an

interesting phenomenon of eigenvectors in high dimensions: entry-wise behavior of eigenvectors can
be benign under factor model structure.

To state our results rigorously, let us suppose that A, Ã,W ∈ Rn×n are symmetric matrices,
with Ã = A + W and rank(A) = K < n. Let the eigen-decomposition of A and Ã be

A =

K∑
k=1

λkvkv
>
k , and Ã =

K∑
k=1

λ̃kṽkṽ
>
k +

n∑
k=K+1

λ̃kṽkṽ
>
k . (9)

Here the eigenvalues {λk}Kk=1 and {λ̃k}Kk=1 are the K largest ones of A and Ã, respectively, in terms

of absolute values. Both sequences are sorted in descending order. {λ̃k}nk=K+1 are eigenvalues of Ã

whose absolute values are smaller than |λ̃K |. The eigenvectors {vk}Kk=1 and {ṽk}nk=1 are normalized
to have unit norms.

Here {λk}Kk=1 are allowed to take negative values. Thanks to Weyl’s inequality, {λ̃k}Kk=1 and

{λ̃k}nk=K+1 are well-separated when the size of perturbation W is not too large. In addition, we
have the freedom to choose signs for eigenvectors, since they are not uniquely defined. Later, we
will use ‘up to sign’ to signify that our statement is true for at least one choice of sign. With the
conventions λ0 = +∞ and λK+1 = −∞, we define the eigen-gap as

δk = min{λk−1 − λk, λk − λk+1, |λk|}, ∀ k ∈ [K], (10)

which is the smallest distance between λk and other eigenvalues (including 0). This definition
coincides with the (usual) eigen-gap in Corollary 2.1 in the special case L(vk) = {λk} where we are
interested in a single eigenvalue and its associated eigenvector.

We now present an entry-wise perturbation result. Let us first look at only one eigenvector. In
this case, when ‖Ã−A‖ is small, heuristically,

ṽk =
Ãṽk

λ̃k
≈ Ãvk

λk
= vk +

(Ã−A)vk
λk

holds uniformly for each entry. When A = EÃ, that is, Ã is unbiased, this gives the first-order
approximation (rather than bounds on the difference ṽk−vk) of the random vector ṽk. Abbe et al.
(2017) proves rigorously this result and generalizes to eigenspaces. The key technique for the proof
is similar to Theorem 2.4 below, which simplifies the one in Abbe et al. (2017) in various ways but
holds under more general conditions. It is stated in a deterministic way, and can be powerful if
there is certain structural independence in the perturbation matrix W. A self-contained proof can
be found in the appendix.

For each m ∈ [n], let W(m) ∈ Rn×n be a modification of W with the mth row and mth column
zeroed out, i.e.,

W
(m)
ij = Wij1{i 6=m}1{j 6=m}, ∀ i, j ∈ [n].

We also define Ã(m) = A + W(m), and denote its eigenvalues and eigenvectors by {λ̃(m)
k }

n
k=1 and

{ṽ(m)
k }

n
k=1, respectively. This construction is related to the leave-one-out technique in probability

and statistics. For recent papers using this technique, see Bean et al. (2013); Zhong and Boumal
(2018); Abbe et al. (2017) for example.
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Theorem 2.4. Fix any ` ∈ [K]. Suppose that |λ`| � maxk∈[K] |λk|, and that the eigen-gap δ` as
defined in (10) satisfies δ` ≥ 5‖W‖2. Then, up to sign,

|[ṽ` − v`]m| .
‖W‖2
δ`

(
K∑
k=1

[vk]
2
m

)1/2

+
|〈wm, ṽ

(m)
` 〉|

δ`
, ∀m ∈ [n], (11)

where wm is the mth column of W.

To understand this theorem, let us compare it with the standard `2 bound (Theorem 2.3) , which
implies ‖ṽ`−v`‖2 . ‖W‖2/δ`. The first term of the upper bound in (11) says the perturbation on
the mth entry can be much smaller, because the factor (

∑K
k=1[vk]

2
m)1/2, always bounded by 1, can

be usually much smaller. For example, if vk’s are uniformly distributed on the unit sphere, then
this factor is typically of order O(

√
K log n/n). This factor is related to the notion of incoherence

in Candès and Recht (2009); Candès et al. (2011), etc.
The second term of the upper bound in (11) is typically much smaller than ‖W‖2/δ`, especially

under certain independence assumption. For example, if wm is independent of other entries, then,

by construction, ṽ
(m)
` and wm are independent. If, moreover, entries of wm are i.i.d. standard

Gaussian, |〈wm, ṽ
(m)
` 〉| is of order OP(1), whereas ‖W‖2 typically scales with

√
n. This gives a

bound for themth entry, and can be extended to an `∞ bound if we are willing to make independence
assumption for all m ∈ [n] (which is typical for random graphs for example).

We remark that this result can be generalized to perturbation bounds for eigenspaces (Abbe
et al., 2017), and the conditions on eigenvalues can be relaxed using certain random matrix as-
sumptions (Koltchinskii and Xia, 2016; O’Rourke et al., 2017; Zhong, 2017).

Now, we extend this perturbation result to singular vectors of rectangular matrices. Suppose
L, L̃,E ∈ Rn×p satisfy L̃ = L + E and rank(L) = K < min{n, p}. Let the SVD of L and L̃ be4

L =

K∑
k=1

σkukv
>
k and L̃ =

K∑
k=1

σ̃kũkṽ
>
k +

min{n,p}∑
k=K+1

σ̃kũkṽ
>
k ,

where σk and σ̃k are respectively non-increasing in k, and uk and vk are all normalized to have
unit `2 norm. As before, let {σ̃k}Kk=1 have K largest absolute values. Similar to (10), we adopt the
conventions σ0 = +∞, σK+1 = 0 and define the eigen-gap as

γk = min{σk−1 − σk, σk − σk+1}, ∀ k ∈ [K]. (12)

For j ∈ [p] and i ∈ [n], we define unit vectors {ũ(j)
k }

min{n,p}
k=1 ⊆ Rn and {ṽ(i)

k }
min{n,p}
k=1 ⊆ Rp by

replacing certain row or column of E with zeros. To be specific, in our expression L̃ = L + E, if
we replace the ith row of E by zeros, then the normalized right singular vectors of the resulting

perturbed matrix are denoted by {ṽ(i)
k }

min{n,p}
k=1 ; and if we replace the jth column of E by zeros, then

the normalized left singular vectors of the resulting perturbed matrix are denoted by {ũ(j)
k }

min{n,p}
k=1 .

4Here, we prefer using uk to refer to the singular vectors (not to be confused with the noise term in factor models).
The same applies to Section 4.
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Corollary 2.2. Fix any ` ∈ [K]. Suppose that σ` � maxk∈[K] σk, and that γ` ≥ 5‖E‖2. Then, up
to sign,

|[ũ` − u`]i| .
‖E‖2
γ`

(
K∑
k=1

[uk]
2
i

)1/2

+
|〈(erow

i )>, ṽ
(i)
` 〉|

γ`
, ∀ i ∈ [n], and

|[ṽ` − v`]j | .
‖E‖2
γ`

(
K∑
k=1

[vk]
2
j

)1/2

+
|〈ecol

j , ũ
(j)
` 〉|

γ`
, ∀ j ∈ [p],

where erow
i ∈ Rp is the ith row vector of E, and ecol

j ∈ Rn is the jth column vector of E.

If we view L̃ as the data matrix (or observation) X, then, the low rank matrix L can be
interpreted as BF>. The above result provides a tool of studying estimation errors of the singular

subspace of this low rank matrix. Note that ṽ
(i)
` can be interpreted as the result of removing the

idiosyncratic error of the ith observation, and ũ
(j)
` as the result of removing the jth covariate of

the idiosyncratic error.
To better understand this result, let us consider a very simple case: K = 1 and each row of E

is i.i.d. N (0, Ip). We are interested in bounding the singular vector difference between the rank-1

matrix L = σ1uv> and its noisy observation L̃ = L + E. This is a spiked matrix model with a

single spike. By independence between erow
i and ṽ

(i)
` as well as elementary properties of Gaussian

variables, Corollary 2.2 implies that with probability 1− o(1), up to sign,

‖ũ1 − u1‖∞ ≤
‖E‖2
σ1
‖u1‖∞ +

O(
√

log n)

σ1
. (13)

Random matrix theory gives ‖E‖2 �
√
n +
√
p with high probability. Our `2 perturbation

inequality (Corollary 2.1) implies that ‖ũ1 − u1‖2 ≤ ‖E‖2/σ1. This upper bound is much larger
than the two terms in (13), as ‖u1‖∞ is typically much smaller than 1 in high dimensions. Thus,
(13) gives a better entry-wise control over the `2 counterpart.

Beyond this simple case, there are many desirable features of Corollary 2.2. First of all, we
allow K to be moderately large, in which case, as mentioned before, the factor (

∑K
k=1[uk]

2
i )

1/2 is
related to the incoherence structure in the matrix completion and robust PCA literature. Secondly,
the result holds deterministically, so random matrices are also applicable. Finally, the result holds
for each i ∈ [n] and j ∈ [p], and thus it is useful even if the entries of E are not independent, e.g.
when a subset of covariates are dependent.

To sum up, our results Theorem 2.4 and Corollary 2.2 provide flexible tools of studying entry-
wise perturbation of eigenvectors and singular vectors. It is also easy to adapt to other problems
since their proofs are not complicated (see the appendix).

3 Applications to High-dimensional Statistics

3.1 Covariance estimation

Estimation of high-dimensional covariance matrices has wide applications in modern data analysis.
When the dimensionality p exceeds the sample size n, the sample covariance matrix becomes
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singular. Structural assumptions are necessary in order to obtain a consistent estimator in this
challenging scenario. One typical assumption in the literature is that the population covariance
matrix is sparse, with a large fraction of entries being (close to) zero, see Bickel and Levina (2008)
and Cai and Liu (2011). In this setting, most variables are nearly uncorrelated. In financial
and genetic data, however, the presence of common factors leads to strong dependencies among
variables (Fan et al., 2008). The approximate factor model (1) better characterizes this structure
and helps construct valid estimates. Under this model, the covariance matrix Σ has decomposition
(2), where Σu = cov(ui) = (σu,jk)1≤j,k≤p is assumed to be sparse (Fan et al., 2013). Intuitively, we
may assume that Σu only has a small number of nonzero entries. Formally, we require the sparsity
parameter

m0 := max
j∈[p]

p∑
k=1

1 {σu,jk 6= 0}

to be small. This definition can be generalized to a weaker sense of sparsity, which is characterized
by mq = maxj∈[p]

∑p
k=1 |σu,jk|

q, where q ∈ (0, 1) is a parameter. Note that small mq forces Σu to
have few large entries. However, for simplicity, we choose not to use this more general definition
when presenting theoretical results below.

The approximate factor model has the following two important special cases, under which the
parameter estimation has been well studied.

• The sparse covariance model is (2) without factor structure, i.e. Σ = Σu; typically, entry-wise
thresholding is employed for estimation.

• The strict factor model corresponds to (2) with Σu being diagonal; usually, PCA-based
methods are used.

The approximate factor model is a combination of the above two models, as it comprises both
a low-rank component and a sparse component. A natural idea is to fuse methodologies for the
two models into one, by estimating the two components using their corresponding methods. This
motivated our high-level idea for estimation under the approximate factor model: (1) estimating
the low-rank component (factors and loadings) using regression (when factors are observable) or
PCA (when factors are latent); (2) after eliminating it from Σ, employing standard techniques
such as thresholding in the sparse covariance matrix literature to estimate Σu; (3) adding the two
estimated components together.

First, let us consider the scenario where the factors {fi}ni=1 are observable. In this setting,
we do not need the Identifiability Assumption 1.1. Fan et al. (2008) focused on the strict factor
model where the Σu in (2) is diagonal. It is then extended to the approximate factor model (1)
by Fan et al. (2011). Later, Fan et al. (2018b) relaxed the sub-Gaussian assumption on the data
to moment condition, and proposed a robust estimator. We are going to present the main idea of
these methods using the one in Fan et al. (2011).

Step 1. Estimate B using the ordinary least-squares: B̂ = (b̂1, . . . , b̂p)
> where

(âj , b̂j) = argmin
a,b̂

1

n

n∑
i=1

(xij − a− b>fi)
2.
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Step 2. Let â = (â1, · · · , âp)> be the vector of intercepts, ûi = xi − â − B̂fi be the vector of
residual for i ∈ [n], and Su = 1

n

∑n
i=1 ûiû

> be the sample covariance. Apply thresholding to Su

and obtain a regularized estimator Σ̂u.

Step 3. Estimate cov(fi) by ĉov(fi) = 1
n

∑n
i=1(fi − f̄)(fi − f̄)>.

Step 4. The final estimator is Σ̂ = B̂ĉov(fi)B̂
> + Σ̂u.

We remark that in Step 2, there are many thresholding rules for estimating sparse covariance
matrices. Two popular choices are the t-statistic-based adaptive thresholding (Cai and Liu, 2011)
and correlation-based adaptive thresholding (Fan et al., 2013), with the entry-wise thresholding

level chosen to be ω � K
√

log p
n . As the sparsity pattern of correlation and covariance are the

same and the correlation matrix is scale-invariant, one typically applies the thresholding on the
correlation and then scales it back to the covariance. Except for the number of factors K, this
coincides with the commonly-used threshold for estimating sparse covariance matrices.

While it is not possible to achieve better convergence of Σ in terms of the operator norm or
the Frobenius norm, Fan et al. (2011) considered two other important norms. Under regularity
conditions, it is shown that

‖Σ̂−Σ‖Σ = OP

(
m0K

√
log p

n
+
K
√
p log p

n

)
,

‖Σ̂−Σ‖max = OP

(
K

√
log p

n
+K2

√
log n

n

)
.

(14)

Here for A ∈ Rp×p, ‖A‖Σ and ‖A‖max refer to its entropy-loss norm p−1/2‖Σ−1/2AΣ−1/2‖F and
entry-wise max-norm maxi,j |Aij |. As is pointed out by Fan et al. (2011) and Wang and Fan (2017),
they are relevant to portfolio selection and risk management. In addition, convergence rates for

‖Σ̂
−1
−Σ−1‖2, ‖Σ̂u −Σu‖2 and ‖Σ̂

−1

u −Σ−1
u ‖2 are also established.

Now we come to covariance estimation with latent factors. As is mentioned in Section 2.1,
the Pervasiveness Assumption 2.1 helps separate the low-rank part BB> from the sparse part
Σu in (2). Fan et al. (2013) proposed a Principal Orthogonal complEment Thresholding (POET)
estimator, motivated by the relationship between PCA and factor model, and the estimation of
sparse covariance matrix Σu in Fan et al. (2011). The procedure is described as follows.

Step 1. Let S = 1
n

∑n
i=1 xix

>
i be the sample covariance matrix, {λ̂j}pj=1 be the eigenvalues of S

in non-ascending order, {ξ̂j}
p
j=1 be their corresponding eigenvectors.

Step 2. Apply thresholding to Su = S−
∑K

j=1 λ̂j ξ̂j ξ̂
>
j and obtain a regularized estimator Σ̂u.

Step 3. The final estimator is Σ̂ =
∑K

j=1 λ̂j ξ̂j ξ̂
>
j + Σ̂u.

Here K is assumed to be known and bounded to simplify presentation and emphasize the main
ideas. The methodology and theory in Fan et al. (2013) also allow using a data-driven estimate K̂
of K. In Step 2 above we can choose from a large class of thresholding rules, and it is recommended
to use the correlation-based adaptive thresholding. However, the thresholding level should be set

to ω̃ �
√

log p
n + 1√

p . Compared to the level
√

log p
n we use in covariance estimation with observed
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factors, the extra term 1/
√
p here is the price we pay for not knowing the latent factors. It can be

negligible when p grows much faster than n. Intuitively, thanks to the Pervasiveness Assumption,
the latent factors can be estimated accurately in high dimensions. Fan et al. (2013) obtained
theoretical guarantees for the POET that are similar to (14). The analysis allows for general
sparsity patterns of Σu by considering mq as the measure of sparsity for q ∈ [0, 1).

Robust procedures handling heavy-tailed data are proposed and analyzed by Fan et al.
(2018a,b). In another line of research, Li et al. (2017) considered estimation of the covariance
matrix of a set of targeted variables, when additional data beyond the variables of interest are
available. By assuming a factor model structure, they constructed an estimator taking advantage
of all the data and justified the information gain theoretically.

The Pervasiveness Assumption rules out the case where factors are weak and the leading eigen-
values of Σ are not as large as O(p). Shrinkage of eigenvalues is a powerful technique in this
scenario. Donoho et al. (2013) systematically studied the optimal shrinkage in spiked covariance
model where all the eigenvalues except several largest ones are assumed to be the same. Wang and
Fan (2017) considered the approximate factor model, which is more general, and proposed a new
version of POET with shrinkage for covariance estimation.

3.2 Principal component regression with random sketch

Principal component regression (PCR), first proposed by Hotelling (1933) and Kendall (1965),
is one of the most popular methods of dimension reduction in linear regression. It employs the
principal components of the predictors xi to explain or predict the response yi. Why do principal
components, not other components, have more prediction power? Here we offer an insight from the
perspective of high-dimensional factor models.

The basic assumption is that the unobserved latent factors fi ∈ RK drive simultaneously the
covariates via (1) and responses, as shown in Figure 3. As a specific example, we assume

yi = θ∗>fi + εi, i = 1, . . . , n, or in matrix form, y = Fθ∗ + ε,

where y = (y1, . . . , yn)> and the noise ε = (ε1, . . . , εn)> has zero means. Since fi is latent and
the covariate vector is high dimensional, we naturally infer the latent factors from the observed
covariates via PCA. This yields the PCR.

By (3) (assume µ = 0 for simplicity), yi ≈ (β†)>xi + εi, where β† := B(B>B)−1θ∗ ∈ Rp. This
suggests that if we directly regress yi over xi, then the regression coefficient β† should lie in the
column space spanned by B. This inspires the core idea of PCR, i.e., instead of seeking the least
square estimator in the entire Rp space, we restrict our search scope to be the left leading singular
space of X, which is approximately the column space of B under the Pervasiveness Assumption.

Let us discuss PCR more rigorously. To be consistent with the rest of this paper, we let
X ∈ Rp×n, which is different from conventions, and

yi = x>i β
∗ + εi, i = 1, . . . , n, or in matrix form, y = X>β∗ + ε. (15)

Let X = (x1, . . . ,xn) = PΣQ> be the SVD of X, where Σ = diag(σ1, . . . , σmin(n,p)) with non-
increasing singular values. For some integer K satisfying 1 ≤ K ≤ min(n, p), write P = (PK ,PK+)
and Q = (QK ,QK+). The PCR estimator β̂K solves the following optimization problem:

β̂K := argminP>K+β=0 ‖y −X>β‖2. (16)
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Figure 3: Illustration of the data generation mechanism in PCR. Both predictors xi and responses
yi are driven by the latent factors fi. PCR extracts latent factors via the principal components
from X, and uses the resulting estimate F̂ as the new predictor. Regressing y against F̂ leads to
the PCR estimator θ̂ ∈ RK , which typically enjoys a smaller variance due to its reduced dimension,
though it introduces bias.

It is easy to verify that

β̂K = PKΣ−1
K Q>Ky = PKP>Kβ

∗ + PKΣ−1
K Q>Kε, (17)

where ΣK ∈ RK×K is the top left submatrix of Σ. The following lemma calculates the excess risk
of β̂K , i.e., E(β̂K) := Eε[‖X>β̂K −X>β∗‖22/n], treating X as fixed. The proof is relegated to the
appendix.

Lemma 3.1. Let p1, . . . ,pmin{n,p} ∈ Rp be the column vectors of P. For j = 1, . . . , p, denote

αj = (β∗)>pj. We have

E(β̂K) =
Kσ2

n
+

p∑
j=K+1

λ2
jα

2
j .

Define the ordinary least squares (OLS) estimator β̂ := (XX>)−1Xy. Note that E(β̂) =
Eε[‖X>β̂ − X>β∗‖22/n] = min(n, p)σ2/n. Comparing E(β̂K) and E(β̂), one can clearly see a
variance-bias tradeoff: PCR reduces the variance by introducing a bias term

∑
j λ

2
jα

2
j , which is

typically small and vanishes in the ideal case P>K+β
∗ = 0 —this is the bias incurred by imposing

the constraint in (16).
In the high-dimensional setting where p is large, calculating PK using SVD is computationally

expensive. Recently, sketching has gained growing attention in statistics community and is used for
downscaling and accelerating inference tasks with massive data. See recent surveys by Woodruff
(2014) and Yang et al. (2016). The essential idea is to multiply the data matrix by a sketch matrix
to reduce its dimension while still preserving the statistical performance of the procedure, since
random projection reduces the strength of the idiosyncratic noise. To apply sketching to PCR, we
first multiply the design matrix X by an appropriately chosen matrix R ∈ Rp×m with K ≤ m < p:

X̃ := R>X, (18)
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where R is called the “sketching matrix”. This creates m indices based on X. From the factor
model perspective (assuming µ = 0), with a proper choice of R, we have X̃ ≈ R>BF>, since the
idiosyncratic components in (1) is averaged out due to weak dependence of u. Hence, the indices
in X̃ are approximately linear combinations of the factors {fi}ni=1. At the same time, since m ≥ K
and R is nondegenerate, the row space of X̃ is approximately the same as that spanned by F>.
This shows running linear regression on X̃ is approximately the same as running it on F>, without
using the computationally expensive PCA.

We now examine the property of sketching approach beyond the factor models. Let X̃ = P̃Σ̃Q̃>

be the SVD of X̃, and write P̃ = (P̃K , P̃K+) and Q̃ = (Q̃K , Q̃K+). Imitating the form of (17), we
consider the following sketched PCR estimator:

β̃K := RP̃KΣ̃
−1

K Q̃>Ky, (19)

where Σ̃K ∈ RK×K is the top left submatrix of Σ̃.
We now explain the above construction for β̃K . It is easy to derive from (17) that given R>X

and y as the design matrix and response vector, the PCR estimator should be β̃
0

K := P̃KΣ̃
−1

K Q̃>Ky.

Then the corresponding PCR projection of y onto R>X should be X>Rβ̃
0

K = X>RP̃KΣ̃
−1

K Q̃>Ky =

X>β̃K . This leads to the construction of β̃K in (19). Theorem 4 in Mor-Yosef and Avron (2018)
gives the excess risk of β̃K , which holds for any R satisfying the conditions of the theorem.

Theorem 3.1. Assume m ≥ K and rank(R>X) ≥ K. If ‖ sin Θ(P̃K ,PK)‖2 ≤ ν < 1, then

E(β̃K) ≤ E(β̂K) +
(2ν + ν2)‖X>β∗‖22

n
. (20)

This theorem shows that the extra bias induced by sketching is (2ν + ν2)‖X>β∗‖22/n. Given

the bound of E(β̂K) in Lemma 3.1, we can deduce that

E(β̃K) ≤ Kσ2

n
+

p∑
j=K+1

α2
jσ

2
j +

(2ν + ν2)‖X>β∗‖22
n

.

As we will see below, a smaller ν requires a larger m, and thus more computation. Therefore,
we observe a tradeoff between statistical accuracy and computational resources: if we have more
computational resources, we can allow a large dimension of sketched matrix X̃, and the sketched
PCR is more accurate, and vice versa.

One natural question thus arises: which R should we choose to guarantee a small ν to retain the
statistical rate of β̂K? Recent results (Cohen et al., 2015) on approximate matrix multiplication
(AMM) suggest several candidate sketching matrices for R. Define the stable rank sr(X) :=
‖X‖2F /‖X‖22, which can be interpreted as a soft version of the usual rank—indeed, sr(X) ≤ rank(X)
always holds, and sr(X) can be small if X is approximately low-rank. An example of candidate
sketching matrices for R is a random matrix with independent and suitably scaled sub-Gaussian
entries. As long as the sketch size m = Ω(sr(X) + log(1/δ)/ε2), it will hold for any ε, δ ∈ (0, 1/2)
that

P(‖X>RR>X−X>X‖22 ≥ ε‖X‖22) ≤ δ. (21)

Combining this with the Davis-Kahan Theorem (Corollary 2.1), we can deduce that
‖sin Θ(P̃K ,PK)‖2 is small with certain eigen-gap condition. We summarize our argument by
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presenting a corollary of Theorem 9 in Mor-Yosef and Avron (2018) below. Readers can find more
candidate sketching matrices in the examples after Theorem 1 in Cohen et al. (2015).

Corollary 3.1. For any ν, δ ∈ (0, 1/2), let

ε = ν(1 + ν)−1(σ2
K − σ2

K+1)/σ2
1.

Let R ∈ Rp×m a random matrix with i.i.d. N (0, 1/m) entries. Then there exists a universal
constant C > 0 such that for any δ > 0, if m ≥ C(sr(X) + log(1/δ)/ε2), it holds with probability at
least 1− δ that

E(β̃K) ≤ E(β̂K) +
(2ν + ν2)‖X>β∗‖22

n
. (22)

Remark 3.1. Note that ε ≤ ν(σ2
K−σ2

K+1)/σ2
1, and this bound is tight with a small ν. Some algebra

yields that (22) holds when

m = Ω
(

sr(X) +
σ2

1 log(1/δ)

ν2(σ2
K − σ2

K+1)2

)
.

One can see that reducing ν requires a larger sketch size m. Besides, a large eigengap of the design
matrix X helps reduce the required sketch size.

3.3 Factor-Adjust Robust Multiple (FARM) tests

Large-scale multiple testing is a fundamental problem in high-dimensional inference. In genome-
wide association studies and many other applications, tens of thousands of hypotheses are tested
simultaneously. Standard approaches such as Benjamini and Hochberg (1995) and Storey (2002)
can not control well both false and missed discovery rates in the presence of strong correlations
among test statistics. Important efforts on dependence adjustment include Efron (2007), Friguet
et al. (2009), Efron (2010), and Desai and Storey (2012). Fan et al. (2012) and Fan and Han (2017)
considered FDP estimation under the approximate factor model. Wang et al. (2017) studied a more
complicated model with both observed variables and latent factors. All these existing papers heavily
rely on the joint normality assumption of the data, which is easily violated in real applications.
A recent paper (Fan et al., 2017a) developed a factor-adjusted robust procedure that can handle
heavy-tailed data while controlling FDP. We are going to introduce this method in this subsection.

Suppose our i.i.d. observations {xi}ni=1 satisfy the approximate factor model (1) where µ ∈ Rp
is an unknown mean vector. To make the model identifiable, we use the Identifiability Assumption
1.1. We are interested in simultaneously testing

H0j : µj = 0 versus H1j : µj 6= 0, for j ∈ [p].

Let Tj be a generic test statistic for H0j . For a pre-specified level z > 0, we reject H0j whenever
|Tj | ≥ z. The numbers of total discoveries R(z) and false discoveries V (z) are defined as

R(z) = #{j : |Tj | ≥ z} and V (z) = #{j : |Tj | ≥ z, µj = 0}.

Note that R(z) is observable while V (z) needs to be estimated. Our goal is to control the false
discovery proportion FDP(z) = V (z)/R(z) with the convention 0/0 = 0.
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Näıve tests based on sample averages 1
n

∑n
i=1 xi suffer from size distortion of FDP control due

to dependence of common factors in (1). On the other hand, the factor-adjusted test based on
the sample averages of xi − Bfi (B and fi need to be estimated) has two advantages: the noise
ui is now weakly dependent so that FDP can be controlled with high accuracy, and the variance
of ui is smaller than that of Bfi + ui in model (1), so that it is more powerful. This will be
convincingly demonstrated in Figure 5 below. The factor-adjusted robust multiple test (FarmTest)
is a robust implementation of the above idea (Fan et al., 2017a), which replaces the sample mean
by its adaptive Huber estimation and extracts latent factors from a robust covariance input.

To begin with, we consider the Huber loss (Huber, 1964) with the robustification parameter
τ ≥ 0:

`τ (u) =

{
u2/2, if |u| ≤ τ
τ |u| − τ2/2, if |u| > τ

,

and use µ̂j = argmaxθ∈R
∑n

i=1 `τ (xij − θ) as a robust M -estimator of µj . Fan et al. (2017a)
suggested choosing τ �

√
n/ log(np) to deal with possible asymmetric distribution and called it

adaptive Huber estimator. They showed, assuming bounded fourth moments only, that

√
n(µ̂j − µj − b>j f̄) = N (0, σu,jj) + oP(1) uniformly over j ∈ [p], (23)

where f̄ = 1
n

∑n
i=1 fi, and σu,jj is the (j, j)th entry of Σu as is defined in (2). Assuming for

now that {bj}pj=1, f̄ and {σu,jj}pj=1 are all observable, then the factor-adjusted test statistic Tj =√
n/σu,jj(µ̂j −b>j f̄) is asymptotically N (0, 1). The law of large numbers implies that V (z) should

be close to 2p0Φ(−z) for z ≥ 0, where Φ(·) is the cumulative distribution function of N (0, 1), and
p0 = #{j : µj = 0} is the number of true nulls. Hence

FDP(z) =
V (z)

R(z)
≈ 2p0Φ(−z)

R(z)
≤ 2pΦ(−z)

R(z)
=: FDPA(z).

Note that in the high-dimensional and sparse regime, we have p0 = p − o(p) and thus FDPA(z)
is only a slightly conservative surrogate. However, we can also estimate the proportion π0 = p0/p
and use less conservative estimate FDPA(z) = 2pπ̂0Φ(−z)/R(z) instead, where π̂0 is an estimate
of π0 whose idea is depicted in Figure 4; see Storey (2002). Finally, we define the critical value
zα = inf{z ≥ 0 : FDPA(z) ≤ α} and reject H0j whenever |Tj | ≥ zα.

In practice, we have no access to {bj}pj=1, f̄ or {σu,jj}pj=1 in (23) and need to use their estimates.
This results in the Factor-Adjusted Robust Multiple test (FarmTest) in Fan et al. (2017a). The
inputs include {xi}ni=1, a generic robust covariance matrix estimator Σ̂ ∈ Rp×p from the data, a
pre-specified level α ∈ (0, 1) for FDP control , the number of factors K, and the robustification
parameters γ and {τj}pj=1. Note that K can be estimated by the methods in Section 2.2, and
overestimating K has little impact on final outputs.

Step 1. Denote by Σ̂ ∈ Rp×p a generic robust covariance matrix estimator. Compute the eigen-
decomposition of Σ̂, set {λ̂j}Kj=1 to be its top K eigenvalues in descending order, and {v̂j}Kj=1 to be

their corresponding eigenvectors. Let B̂ = (λ̃
1/2
1 v̂1, . . . , λ̃

1/2
K v̂K) ∈ Rp×K where λ̃j = max{λ̂j , 0},

and denote its rows by {b̂j}pj=1.

Step 2. Let x̄j = 1
n

∑n
i=1 xij for j ∈ [p] and f̂ = argmaxf∈RK

∑p
j=1 `γ(x̄j − b̂>j f). Construct
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Figure 4: Estimation of proportion of true nulls. The observed P-values (right panel) consist of those
from significant variables (genes), which are usually small, and those from insignificant variables,
which are uniformly distributed. Assuming the P-values for significant variables are mostly less
than λ (taken to be 0.5 in this illustration, left panel), the contributions of observed P-values > λ
are mostly from true nulls and this yields a natural estimator π̂0(λ) = 1

(1−λ)p

∑p
j=1 1(P̂j > λ), which

is the average height of the histogram with P-values > λ (red line). Note that the histograms above
the red line estimates the distributions of P-values from the significant variavles (genes) in the left
panel.

factor-adjusted test statistics

Tj =
√
n/σ̂u,jj(µ̂j − b̂>j f̂) for j ∈ [p], (24)

where σ̂u,jj = θ̂j − µ̂2
j − ‖b̂j‖22, θ̂j = argmin

θ≥µ̂2j+‖b̂j‖22
`τj (x

2
ij − θ).

Step 3. Calculate the critical value zα = inf{z ≥ 0 : FDPA(z) ≤ α}, where FDPA(z) =
2π̂0pΦ(−z)/R(z), and reject H0j whenever |Tj | ≥ zα.

In Step 2, we estimate f̄ based on x̄j = µj + b̂>j f̄ + ūj , which is implied by the factor model
(1), and regard non-vanishing µj as an outlier. In the estimation of σu,jj , we used the identity
θj := Ex2

ij = µ2
j + ‖bj‖2 + σu,jj and robustly estimated the second moment θj .

Figure 5 is borrowed from Figure 1 in Fan et al. (2017a) that illustrates the effectiveness of
this procedure. Here n = 100, p = 500, K = 3, fi ∼ N (0, I3) and the entries of ui are generated
independently from the t-distribution with 3 degrees of freedom. It is known that t−distributions
are not sub-Guassian variables and are often used to model heavy-tailed data. The unknown means
µ ∈ Rp are fixed as µj = 0.6 for j ≤ 125 and µj = 0 otherwise. We plot the histograms of sample
means, robust mean estimators, and their counterparts with factor-adjustment. The latent factors
and heavy-tailed errors make it difficult to distinguish µj = 0.6 from µj = 0, and that explains why
the sample means behave poorly. As is shown in Figure 5, better separation can be obtained by
factor adjustment and robustification.

While existing literature usually imposes the joint normal assumption on {fi,ui}ni=1, the
FarmTest only requires the coordinates of {ui}ni=1 to have bounded fourth-order moments, and

22



Histogram of Sample Means

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
10

20
30

40
50

60

0.6

Histogram of Sample Means with Factor Adjustment

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
10

20
30

40

0.6

Histogram of Robust Means

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
10

20
30

40

0.6

Histogram of Robust Means with Factor Adjustment
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Figure 5: Histograms of four different mean estimators for simultaneous inference. Fix n = 100,
p = 500 and K = 3, and data are generated i.i.d. from t3, which is heavy-tailed. Dashes lines
correspond to µj = 0 and µj = 0.6, which is unknown. Robustification and factor adjustment help
distinguish nulls and alternatives.

{fi}ni=1 to be sub-Gaussian. Under standard regularity conditions for the approximate factor model,
it is proved by Fan et al. (2017a) that

FDPA(z)− FDP(z) = oP(1).

We see that FDPA is a valid approximation of FDP, which is therefore faithfully controlled by the
FARM-Test.

3.4 Factor-Adjusted Robust Model (FARM) selection

Model selection is one of the central tasks in high dimensional data analysis. Parsimonious models
enjoy interpretability, stability and oftentimes, better prediction accuracy. Numerous methods for
model selection have been proposed in the past two decades, including, Lasso (Tibshirani, 1996),
SCAD (Fan and Li, 2001), the elastic net Zou and Hastie (2005), the Dantzig selector (Candes
and Tao, 2007), among others. However, these methods work only when the covariates are weakly
dependent or statisfy certain regularity conditions (Zhao and Yu, 2006; Bickel et al., 2009). When
covariates are strongly correlated, Paul et al. (2008); Kneip and Sarda (2011); Wang (2012); Fan
et al. (2016a) used factor model to eliminate the dependencies caused by pervasive factors, and to
conduct model selection using the resulting weakly correlated variables.
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Assume that {xi}ni=1 follow the approximate factor model (1). As a standard assumption, the
coordinates of wi = (f>i ,u

>
i )> ∈ RK+p are weakly dependent. Thanks to this condition and the

decomposition

x>i β = (µ+ Bfi + ui)
>β = α+ u>i β + f>i γ (25)

where α = µTβ and γ = B>β. we may treat wi as the new predictors. In other words, by lifting
the number of variables from p to p + K, the covariates of wi are now weakly dependent. The
usual regularized estimation can now be applied to this new set of variables. Note that we regard
the coefficients B>β as free parameters to facilitate the implementation (ignoring the relation
γ = B>β) and this requires an additional assumption to make this valid (Fan et al., 2016a).

Suppose we wish to fit a model yi = g(x>i β, εi) via a loss function L(yi,x
>
i β). The above idea

suggests the following two-step approach, which is called Factor-Adjusted Regularized (or Robust
when so implemented) Model selection (FarmSelect) (Fan et al., 2016a).

Step 1: Factor estimation. Fit the approximate factor model (1) to get B̂, f̂i and ûi = xi− B̂f̂i.

Step 2: Augmented regularization. Find α, β and γ to minimize

n∑
i=1

L(yi, α+ û>i β + f̂>i γ) +

p∑
j=1

pλ(|βj |),

where pλ(·) is a folded concave penalty (Fan and Li, 2001) with parameter λ.

In Step 1, standard estimation procedures such as POET (Fan et al., 2013) and S-POET (Wang
and Fan, 2017) can be applied, as long as they produce consistent estimators of B, {fi}ni=1 and
{ui}ni=1. Step 2 is carried out using usual regularization methods with new covariates.

Figure 6, borrowed from Figure 3 (a) in Fan et al. (2016a), shows that the proposed method
outperforms other popular ones for model selection including Lasso (Tibshirani, 1996), SCAD (Fan
and Li, 2001) and elastic net (Zou and Hastie, 2005), in the presence of correlated covariates. The
basic setting is sparse linear regression y = x>β∗ + ε with p = 500 and n growing from 50 to 160.
The true coefficients are β∗ = (β1, · · · , β10,0p−10)>, where {βj}10

j=1 are drawn uniformly at random
from [2, 5], and ε ∼ N (0, 0.3). The correlation structure of covariates x is calibrated from S&P 500
monthly excess returns between 1980 and 2012.

Under the generalized linear model, L(y, z) = −yz + b(z) and b(·) is a convex function. Fan
et al. (2016a) analyzed theoretical properties of the above procedure. As long as the coordinates
of wi (rather than xi) are not too strongly dependent and the factor model is estimated to enough
precision, β̂ enjoys optimal rates of convergence ‖β̂ − β∗‖q = OP(|S|1/q

√
log p/n), where q = 1, 2

or ∞. When the minimum entry of |β∗| is at least Ω(
√

log p/n), the model selection consistency is
achieved.

When we use the square loss, this method reduces to the one in Kneip and Sarda (2011).
By using the square loss and replacing the penalized multiple regression in Step 2 with marginal
regression, we recover the factor-profiled variable screening method in Wang (2012). While these
papers aim at modeling and then eliminating the dependencies in xi via (1), Paul et al. (2008)
used a factor model to characterize the joint distribution of (yi,x

>
i )> and develops a related but

different approach.
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Figure 6: Model selection consistency rate, i.e., the proportion of simulations that the selected
model is identical to the true one, with p = 500 and n varying from 50 to 160. With moderate
sample size, the proposed method faithfully identifies the correct model while other methods cannot.

4 Related learning problems

4.1 Gaussian mixture model

PCA, or more generally, spectral decomposition, can be also applied to learn mixture models
for heterogeneous data. A thread of recent papers (Hsu and Kakade, 2013; Anandkumar et al.,
2014; Yi et al., 2016; Sedghi et al., 2016) apply spectral decomposition to lower-order moments
of the data to recover the parameters of interest in a wide class of latent variable models. Here
we use the Gaussian mixture model to illustrate their idea. Consider a mixture of K Gaussian
distributions with spherical covariances. Let wk ∈ (0, 1) be the probability of choosing component
k ∈ {1, . . . ,K}, and {µ1, . . . ,µk} ⊆ Rp be the component mean vectors, and {σ2

kIp}Kk=1 be the
component covariance matrices, which is required by Hsu and Kakade (2013) and Anandkumar
et al. (2014). Each data vector x ∼ w1N (µ1, σ

2
1Ip) + · · ·+wKN (µK , σ

2
KIp) follows the mixture of

the Gaussian distribution. The parameters of interest are {wk,µk, σ2
k}Kk=1.

Hsu and Kakade (2013) and Anandkumar et al. (2014) shed lights on the close connection
between the lower-order moments of the data and the parameters of interest, which motivates the
use of Method of Moments (MoM). Denote the population covariance E[(x−Ex)(x−Ex)>] by Σ.
Below we present Theorem 1 in Hsu and Kakade (2013) to elucidate the moment structure of the
problem.

Theorem 4.1. Suppose that {µk}Kk=1 are linearly independent. Then the average variance σ2
ave :=

K−1
K∑
k=1

σ2
k is the smallest eigenvalue of Σ. Let v be any eigenvector of Σ that is associated with
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the eigenvalue σ2
ave. Define the following quantities:

M1 = E[(v>(x− Ex))2x] ∈ Rp,
M2 = E[x⊗ x]− σ2

ave · Ip ∈ Rp×p,

M3 = E[x⊗ x⊗ x]−
p∑
j=1

(M1 ⊗ ej ⊗ ej + ej ⊗M1 ⊗ ej + ej ⊗ ej ⊗M1) ∈ Rp×p×p.

Then we have

M1 =
K∑
k=1

wkσ
2
kµk, M2 =

K∑
k=1

wkµk ⊗ µk, M3 =
K∑
k=1

wkµk ⊗ µk ⊗ µk, (26)

where the notation ⊗ represents the tensor product.

Theorem 4.1 gives the relationship between the moments of the first three orders of x and the
parameters of interest. With {Mi}3i=1 replaced by their empirical versions, the remaining task is
to solve for all the parameters of interest via (26). Hsu and Kakade (2013) and Anandkumar et al.
(2014) proposed a fast method called robust tensor power method to compute the estimators. The

crux therein is to construct an estimable third-order tensor M̃3 that can be decomposed as the
sum of orthogonal tensors based on µk. This orthogonal tensor decomposition can be regarded as
an extension of spectral decomposition to third-order tensors (simply speaking, three-dimensional

arrays). Then the power iteration method is applied to the estimate of M̃3 to recover each µk, as
well as other parameters.

Specifically, consider first the following linear transformation of µk:

µ̃k :=
√
ωk W>µk (27)

for k ∈ [K], where W ∈ Rp×K . The key is to use the whitening transformation by setting W
to be a square root of M2. This ensures that {µ̃k}Kk=1 are orthogonal to each other. Denoting
a⊗3 = a⊗ a⊗ a,

M̃3 :=
K∑
k=1

ωk(W
>µk)

⊗3 =

K∑
k=1

1
√
ωk
µ̃⊗3
k ∈ RK×K×K (28)

is an orthogonal tensor decomposition; that is, it satisfies orthogonality of {µ̃k}Kk=1. The following
theorem from Anandkumar et al. (2014) summarizes the above argument, and more importantly,
it shows how to obtain µk back from µ̃k.

Theorem 4.2. Suppose the vectors {µk}Kk=1 are linearly independent, and the scalars {ωk}Kk=1 are
strictly positive. Let M2 = UDU> be the spectral decomposition of M2 and let W = UD−1/2. Then
{µ̃k}Kk=1 in (27) are orthogonal to each other. Furthermore, the Moore-Penrose pseudo-inverse of
W is W† := D1/2U> ∈ RK×p, and we have µk = (W†)>µ̃k/

√
ωk for k ∈ [K].

As promised, the orthogonal tensor M̃3 can be estimated from empirical moments. We will
make use of the following identity, which is similar to Theorem 4.1.

M̃3 = E[(W>x)⊗3]−
p∑
j=1

∑
cyc

(W>M1)⊗ (W>ej)⊗ (W>ej), (29)
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where we used the cyclic sum notation∑
cyc

a⊗ b⊗ c := a⊗ b⊗ c + b⊗ c⊗ a + c⊗ a⊗ b.

Note that W>ej ∈ RK is simply the jth row of W. To obtain an estimate of M̃3, we replace the
expectation E by the empirical average, and substitute W and M1 by their plug-in estimates. It is
worth mentioning that, because M̃3 has a smaller size than M3, computations involving M̃3 can
be implemented more efficiently.

Once we obtain an estimate of M̃3, which we denote by M3, to recover {µk}Kk=1, {ωk}Kk=1 and
{σ2

k}Kk=1, the only task left is computing the orthogonal tensor decomposition (28) for M3. The
tensor power method in Anandkumar et al. (2014) is shown to solve this problem with provable
computational guarantees. We omit the details of the algorithm here. Interested readers are referred
to Section 5 of Anandkumar et al. (2014) for the introduction and analysis of this algorithm.

To conclude this subsection, we summarize the entire procedure of estimating {µk, σk, ωk}Kk=1

as below.

Step 1. Calculate the sample covariance matrix Σ̂ := n−1
n∑
i=1

(xi − x)(xi − x)>, its minimum

eigenvalue σ̂2
ave and its associated eigenvector v̂.

Step 2. Derive the estimators M̂1, M̂2, M̂3 based on Theorem 4.1 by plug-in of empirical
moments of x, v̂ and σ̂2

ave.

Step 3. Calculate the spectral decomposition M̂2 = ÛD̂Û>. Let Ŵ = ÛD̂−1/2. Construct
an estimator of M̃3, denoted by M3, based on (29) by plug-in of empirical moments of Ŵ>x, Ŵ

and M̂1. Apply the robust tensor power method in Anandkumar et al. (2014) to M3 and obtain
{µk}Kk=1 and {ω̂k}Kk=1.

Step 4. Set Ŵ† = D̂1/2Û> and µ̂k = (Ŵ†)>µk/
√
ω̂k. Solve the linear equation M̂1 =

K∑
k=1

ω̂kσ̂
2
kµ̂k for {σ̂2

k}Kk=1.

4.2 Community detection

In statistical modeling of networks, the stochastic block model (SBM), first proposed by Holland
et al. (1983), has gained much attention in recent years (see Abbe, 2017 for a recent survey).
Suppose our observation is a graph of n vertices, each of which belongs to one of K communities (or
blocks). Let the vertices be indexed by [n], and the community that vertex i belongs to is indicated
by an unknown θi ∈ [K]. In SBM, the probability of an edge between two vertices depends entirely
on the membership of the communities. To be specific, let W ∈ RK×K be a symmetric matrix
where each entry takes value in [0, 1], and let A ∈ Rn×n be the adjacency matrix, i.e., Aij = 1 if
there is an edge between vertex i and j, and Aij = 0 otherwise. Then, the SBM assumes

P(Aij = 1) = Wk` with θi = k, θj = `

and {Aij}i>j are independent. Here, for ease of presentation, we allow self-connecting edges.
Figure 7 gives one realization of the network with two communities.
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Figure 7: In both heatmaps, a dark pixel represents an entry with value 1 in a matrix, and a
white pixel represents an entry with value 0. The left heatmap shows the (observed) adjacency
matrix A of size n = 40 generated from the SBM with two equal-sized blocks (K = 2), with edge
probabilities 5 log n/n (within blocks) and log n/(4n) (between blocks). The right heatmap shows
the same matrix with its row indices and column indices suitably permutated based on unobserved
zi. Clearly, we observe an approximate rank-2 structure in the right heatmap. This motivates
estimating zi via the second eigenvector.

Though seemingly different, this problem shares a close connection with PCA and spectral
methods. Let zi = ek (namely, the kth canonical basis in RK) if θi = k, indicating the mem-
bership of ith node, and define Z = [z1, . . . , zn]> ∈ Rn×K . The expectation of A has a low-rank
decomposition EA = ZWZ> and

A = ZWZ> + (A− EA). (30)

Loosely speaking, the matrix Z plays a similar role as factors or loading matrices (unnormalized),
and A−EA is similar to the noise (idiosyncratic component). In the ideal situation, the adjacency
matrix A and its expectation are close, and naturally we expect the eigenvectors of A to be useful
for estimating θi. Indeed, this observation is the underpinning of many methods (Rohe et al., 2011;
Gao et al., 2015; Abbe and Sandon, 2015). The vanilla spectral method for network/graph data is
as follows:

Step 1. Construct the adjacency matrix A or other similarity-based matrices;

Step 2. Compute eigenvectors v1, . . . ,vL corresponding to the largest eigenvalues, and form a
matrix V = [v1, . . . ,v`] ∈ Rn×L;

Step 3. Run a clustering algorithm on the row vectors of V.

There are many variants and improvements of this vanilla spectral method. For example, in
Step 1, very often the graph Laplacian D − A or normalized Laplacian D−1/2(D − A)D−1/2 is
used in place of the adjacency matrix, where D = diag(d1, . . . , dn), and di =

∑
j Aij is the degree

of vertex i. If real-valued similarities or distances between vertices are available, weighted graphs
are usually constructed. In Step 2, there are many other refinements over raw eigenvectors in
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the construction of V, for example, projecting row vectors of V onto the unit sphere (Ng et al.,
2002), and calculating scores based on eigenvector ratios (Jin, 2015), etc. In Step 3, a very popular
algorithm for clustering is the K-means algorithm.

We will look at the vanilla spectral algorithm in its simplest form. Our goal is exact recovery,
which means finding an estimator θ̂ of θ = (θ1, . . . , θn)> such that as n→∞,

P(there exists a permutation π of [K] s.t. θ̂i = π(θi),∀ i ∈ [n]) = 1− o(1).

Note that we can only determine θ up to a permutation since the distribution of our observation
is invariant to permutations of [K]. There are nice theoretical results, including information limits
for exact recovery in Abbe et al. (2016).

Despite its simplicity, spectral methods can be quite sharp for exact recovery in SBM, which
succeed in a regime that matches the information limit. The next theorem from Abbe et al.
(2017) will make this point clear. Consider the SBM with two balanced blocks, i.e., K = 2 and
{i : θi = 1} = {i : θi = 2} = n/2, and suppose W11 = W22 = a log n/n, W12 = b log n/n where
a > b > 0. In this case, one can easily see that the second eigenvector of EA is given by v∗2
whose ith entry is given by 1/

√
n if θi = 1 and −1 otherwise. In other words, sgn(v∗2) classifies

the two communities, where sgn(·) is the sign function applied to each entry of a vector. This
is shown in Figure 2 for the case that #{i : θi = 1} = 2500 (red curve, left panel), where the
second eigenvector v2 of A is also depicted (blue curve). The entrywise closeness between these
two quantities is guaranteed by the perturbation theory under `∞-norm (Abbe et al., 2017).

Theorem 4.3. Let v2 be the normalized second eigenvector of A. If
√
a −
√
b <

√
2, then no

estimator achieves exact recovery; if
√
a −
√
b >
√

2, then both the maximum likelihood estimator
and the eigenvector estimator sgn(v2) achieves exact recovery.

The proof of this result is based on entry-wise analysis of eigenvectors in a spirit similar to
Theorem 2.4, together with a probability tail bound for differences of binomial variables.

4.3 Matrix completion

In recommendation systems, an important problem is to estimate users’ preferences based on history
data. Usually, the available data per user is very small compared with the total number of items
(each user sees only a small number of movies and buys only a small fraction of books, comparing
to the total). Matrix completion is one formulation of such problem.

The goal of (noisy) matrix completion is to estimate a low-rank matrix M∗ ∈ Rn1×n2 from noisy
observations of some entries (n1 users and n2 items). Suppose we know rank(M∗) = K. For each
i ∈ [n1] and j ∈ [n2], let Iij be i.i.d. Bernoulli variable with P(Iij = 1) = p that indicates if we have
observed information about the entry M∗ij , i.e., Iij = 1 if and only if it is observed. Also suppose

that our observation is Mij = M∗ij + εij if Iij = 1, where εij is i.i.d. N (0, σ2) jointly independent of
Iij .

One natural way to estimate M∗ is to solve

min
X∈Rn1×n2

1

2
‖PΩ(M)− PΩ(X)‖2 subject to rank(X) = K,

where PΩ : Rn1×n2 → Rn1×n2 is the sampling operator defined by [PΩ(X)]ij = IijXij , ∀i, j.
The minimizer of this problem is essentially the MLE for M∗. Due to the nonconvex constraint
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rank(X) = K, it is desirable to relax this optimization into a convex program. A popular way to
achieve that is to transform the rank constraint into a penalty term λ‖X‖∗ that is added to the
quadratic objective function, where λ is a tuning parameter and ‖ · ‖∗ is the nuclear norm (that
is, the `1 norm of the vector of all its singular values), which encourages a solution with low rank
(number of nonzero components in that vector). A rather surprising conclusion from Candès and
Recht (2009) is that in the noiseless setting, solving the relaxed problem yields the same solution
as the nonconvex problem with high probability.

We can view this problem from the perspective of factor models. The assumption that M∗ has
low rank can be justified by interpreting each Mij as the linear combination of a few latent factors.
Indeed, if Mij is the preference score of user i for item j, then it is reasonable to posit Mij = b>i fj ,
where fj ∈ RK is the features item j possesses and bi ∈ RK is the tendency of user i towards the
features. In this regard, M∗ = BF> can be viewed as the part explained by the factors in the
factor models.

This discussion motivates us to write our observation as

PΩ(M) = pM∗ + (PΩ(M∗)− EPΩ(M∗) + PΩ(E)), where E := (εij)i,j ∈ Rn1×n2 ,

since EPΩ(M∗) = pM∗. This decomposition gives the familiar “low-rank plus noise” structure. It
is natural to conduct PCA on PΩ(M) to extract the low-rank part.

Let the best rank-K approximation of PΩ(M) be given by Udiag(σ1, . . . , σK)V>, where {σk}Kk=1

are the largest K singular values in descending order, and columns of U ∈ Rn1×K ,V ∈ Rn2×K

correspond to their normalized left and right singular vectors, respectively. Similarly, we have
singular value decomposition M∗ = U∗diag(σ∗1, . . . , σ

∗
K)(V∗)>. The following result from Abbe

et al. (2017) provides entry-wise bounds for our estimates. For a matrix, denote by ‖ · ‖max the
largest absolute value of all entries, and ‖ · ‖2→∞ the largest `2 norm of all row vectors.

Theorem 4.4. Let n = n1 + n2, η = max{‖U‖2→∞, ‖V‖2→∞} and κ = σ∗1/σ
∗
K . There exist

constants C,C ′ > 0 and an orthogonal matrix R ∈ RK×K such that the following holds. If p ≥
6 log n/n and κn(‖M∗‖max+σ)

σ∗r

√
logn
np ≤ 1/C, then with at least probability 1− C/n,

max{‖UR−U∗‖max, ‖VR−V∗‖max} ≤ C ′ηκ
n(‖M∗‖max + σ)

σ∗r

√
log n

np
,

‖Udiag{σ1, . . . , σK}V> −M∗‖max ≤ C ′η2κ4(‖M∗‖max + σ)

√
n log n

p
.

We can simplify the bounds with a few additional assumptions. If n1 � n2, then η is of order
O(
√
K/n) assuming a bounded coherence number. In addition, if κ is also bounded, then

‖Udiag{σ1, . . . , σK}V> −M∗‖max . (‖M∗‖max + σ)

√
log n

np
.

We remark that the requirement on the sample ratio p & log n/n is the weakest condition necessary
for matrix completion, which ensures each row and column and sampled with high probability.
Also, the entry-wise bound above can recover the Frobenius bound (Keshavan et al., 2010) up to
a log factor. It is more precise than the Frobenius bound, because the latter only provides control
on average error.
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4.4 Synchronization problems

Synchronization problems are a class of problems in which one estimates signals from their pairwise
comparisons. Consider the phase synchronization problem as an example, that is, estimating n
angles θ1, . . . , θn from noisy measurements of their differences. We can express an angle θ` in
the equivalent form of a unit-modulus complex number z` = exp(iθ`), and thus, the task is to
estimate a complex vector z = (z1, . . . , zn)> ∈ Cn. Suppose our measurements have the form
C`k = z̄`zk +σw`k, where z̄` denotes the conjugate of z`, and for all ` > k, w`k ∈ C is i.i.d. complex
Gaussian variable (namely, the real part and imaginary part of w`k are N (0, 1/2) and independent).
Then, the phase of C`k (namely arg(C`k)) encodes the noisy difference θk − θ`.

More generally, the goal of a synchronization problem is to estimate n signals from their pairwise
measurements, where each signal is an element from a group, e.g., the group of rotations in three
dimensions. Synchronization problems are motivated from imaging problems such as cryo-EM
(Shkolnisky and Singer, 2012), camera calibration (Tron and Vidal, 2009), etc.

Synchronization problems also admit the “low-rank plus noise” structure. Consider our phase
synchronization problem again. If we let wk` = w`k (` > k) and w`` = 0, and write W = (w`k)

n
`,k=1,

then our measurement matrix C = (C`k)
n
`,k=1 has the structure

C = zz∗ + σW,

where ∗ denotes the conjugate transpose. This decomposition has a similar form to (30) in commu-
nity detection. Note that zz∗ is a complex matrix with a single nonzero eigenvalue n, and ‖σW‖2
is of order σ

√
n with high probability (which is a basic result in random matrix theory). Therefore,

we expect that no estimators can do well if σ &
√
n. Indeed, the information-theoretic limit is

established in Lelarge and Miolane (2016). Our next result from Zhong and Boumal (2018) gives
estimation guarantees if the reverse inequality is true (up to a log factor).

Theorem 4.5. Let v ∈ Cn be the leading eigenvector of C such that ‖v‖2 =
√
n and v∗z = |v∗z|.

Then, if σ .
√
n/ log n, then with probability 1−O(n−2), the relative errors satisfy

n−1/2‖v − z‖2 . σ/
√
n, and ‖v − z‖∞ . σ

√
log n/n.

Moreover, the above two inequalities also hold for the maximum likelihood estimator.

Note that the eigenvector of a complex matrix is not unique: for any α ∈ R, the vector eiαv is
also an eigenvector, so we fix the global phase eiα by restricting v∗z = |v∗z|. Note also that the
maximum likelihood estimator is different from v, because the MLE must satisfy the entry-wise
constraint |z`| = 1 for any ` ∈ [n]. This result implies consistency of v in terms of both the `2 norm
and the `∞ norm if σ �

√
n/ log n, and thus, provides good evidence that spectral methods (or

PCA) are simple, generic, yet powerful.

A Proofs

Proof of Corollary 2.1. Notice that the result is trivial if δ0 ≤ 2‖Ã −A‖2, since ‖(Ã −A)V‖2 ≤
‖Ã−A‖2 and ‖ sin Θ(Ã,A)‖2 ≤ 1 always hold. If δ0 > 2‖Ã−A‖2, then by Weyl’s inequality,

L(Ṽ⊥) ⊂ (−∞, α− δ0 + ‖Ã−A‖2] ∪ [β + δ0 − ‖Ã−A‖2,+∞).
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Thus, we can set δ = δ0 − ‖Ã−A‖2 in Theorem 2.3 and derive

‖ sin Θ(Ṽ,V)‖2 ≤
‖Ã−A‖2

δ0 − ‖Ã−A‖2
≤ ‖Ã−A‖2

δ0 − δ0/2
= 2δ−1

0 ‖Ã−A‖2.

This proves the spectral norm case.

Proof of Theorem 2.4. Step 1: First, we derive a few elementary inequalities: for any m ∈ [n],

‖W(m)‖2 ≤ ‖W‖2, ‖wm‖2 ≤ ‖W‖2, ‖W −W(m)‖2 ≤ 2‖W‖2. (31)

To prove these inequalities, recall the (equivalent) definition of spectral norm for symmetric matri-
ces:

‖W‖2 = max
x,y∈Sn−1

x>Wy = max
x∈Sn−1

‖Wx‖2,

where Sn−1 is the unit sphere in Rn, and x = (x1, . . . , xn)>,y = (y1, . . . , yn)>. The first and second
inequalities follow from

‖W‖2 ≥ max{x>Wy : x,y ∈ Sn−1, xm = ym = 0} = ‖W(m)‖2, and

‖W‖2 ≥ max
x∈Sn−1

|〈wm,x〉| = ‖wm‖2.

The third inequality follows from the first one and the triangle inequality.
Step 2: Next, by the definition of eigenvectors,

ṽ` − v` =
Ãṽ`

λ̃`
− v` =

(
Aṽ`

λ̃`
− v`

)
+

Wṽ`

λ̃`
. (32)

We first control the entries of the first term on the right-hand side. Using the decomposition (9),
we have [

Aṽ`

λ̃`
− v`

]
m

=

(
λ`

λ̃`
〈v`, ṽ`〉 − 1

)
[v`]m +

∑
k 6=`,k≤K

λk

λ̃`
〈vk, ṽ`〉[vk]m, ∀m ∈ [n]. (33)

Using the triangle inequality, we have∣∣∣∣λ`
λ̃`
〈v`, ṽ`〉 − 1

∣∣∣∣ ≤ ∣∣∣∣λ`
λ̃`
〈v`, ṽ`〉 − 〈v`, ṽ`〉

∣∣∣∣+ |〈v`, ṽ`〉 − 1| ≤ |λ` − λ̃`|
|λ̃`|

+
1

2
‖ṽ` − v`‖2 .

By Weyl’s inequality, |λ̃`−λ`| ≤ ‖W‖2, and thus |λ̃`| ≥ |λ`|− ‖W‖2 ≥ δ`−‖W‖2. Also, by Corol-
lary 2.1 (simplified Davis-Kahan’s theorem) and its following remark, ‖ṽ` − v`‖2 ≤ 2

√
2 ‖W‖2/δ`.

Therefore, under the condition δ` ≥ 2‖W‖2,∣∣∣∣λ`
λ̃`
〈v`, ṽ`〉 − 1

∣∣∣∣ ≤ ‖W‖2
δ` − ‖W‖2

+
4‖W‖22
δ2
`

≤ 2‖W‖2
δ`

+
2‖W‖2
δ`

=
4‖W‖2
δ`

.

Using Corollary 2.1 again, we obtain∑
k 6=`,k≤K

λ2
k

λ̃2
`

〈vk, ṽ`〉2 .
∑

k 6=`,k≤K
〈vk, ṽ`〉2 ≤ 1− 〈v`, ṽ`〉2 = sin2 θ(v`, ṽ`) ≤

4‖W‖22
δ2
`

,
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where the first inequality is due to |λ̃`| ≥ |λ`| − ‖W‖2 ≥ 4|λ`|/5 and the condition |λ`| �
maxk∈[K] |λk|, and the second inequality is due to the fact that {vk}Kk=1 is a subset of orthonormal
basis. Now we use the Cauchy-Schwarz inequality to bound the second term on the right-hand side
of (33) and get ∣∣∣∣[Aṽ`

λ̃`
− v`

]
m

∣∣∣∣ . ‖W‖2δ`

(
K∑
k=1

[vk]
2
m

)1/2

. (34)

Step 3: To bound the entries of the second term in (32), we use the leave-one-out idea as
follows.

[Wṽ`]m = [Wṽ
(m)
` ]m + [W(ṽ` − ṽ

(m)
` )]m = 〈wm, ṽ

(m)
` 〉+ 〈wm, ṽ` − ṽ

(m)
` 〉, ∀m ∈ [n]. (35)

We can bound the second term using the Cauchy-Schwarz inequality: |〈wm, ṽ` − ṽ
(m)
` 〉| ≤

‖wm‖2‖ṽ` − ṽ
(m)
` ‖2. The crucial observation is that, if we view ṽ` as the perturbed version of

ṽ
(m)
` , then by Theorem 2.3 (Davis-Kahan’s theorem) and Weyl’s inequality, for any ` ∈ [K],

‖ṽ` − ṽ
(m)
` ‖2 ≤

√
2‖∆(m)ṽ

(m)
` ‖2

δ̃
(m)
` − ‖∆(m)‖2

, where ∆(m) := W −W(m).

Here, δ̃
(m)
` is the eigen-gap of A + W(m), and it satisfies δ̃

(m)
` ≥ δ` − 2‖W(m)‖2 since |λ̃(m)

i − λi| ≤
‖W(m)‖2 for all i ∈ [n], by Weyl’s inequality. By (31), we have δ̃

(m)
` − ‖∆(m)‖2 ≥ δ` − 4‖W‖2.

Thus, under the condition δ` ≥ 5‖W‖2, we have

‖ṽ` − ṽ
(m)
` ‖2 .

‖∆(m)ṽ
(m)
` ‖2

δ`
.

Note that the mth entry of the vector ∆(m)ṽ
(m)
` is exactly 〈wm, ṽ

(m)
` 〉, and other entries are

Wim[ṽ
(m)
` ]m where i 6= m. Thus,

‖ṽ` − ṽ
(m)
` ‖2 .

1

δ`

〈wm, ṽ
(m)
` 〉

2 +
∑
i 6=m

W 2
im[ṽ

(m)
` ]2m

1/2

≤ 1

δ`

(
|〈wm, ṽ

(m)
` 〉|+ ‖wm‖2|[ṽ(m)

` ]m|
)
,

where we used
√
a+ b ≤

√
a+
√
b (a, b ≥ 0). The above inequality, together with |〈wm, ṽ`−ṽ

(m)
` 〉| ≤

‖wm‖2‖ṽ` − ṽ
(m)
` ‖2, leads to a bound on [Wṽ`]m in (35).

|[Wṽ`]m| . |〈wm, ṽ
(m)
` 〉|+

‖wm‖2
δ`

(
|〈wm, ṽ

(m)
` 〉|+ ‖wm‖2|[ṽ(m)

` ]m|
)

. |〈wm, ṽ
(m)
` 〉|+ ‖wm‖2|[ṽ(m)

` ]m| (36)

where we used δ−1
` ‖wm‖2 ≤ δ−1

` ‖W‖2 < 1. We claim that |[ṽ(m)
` ]m| . (

∑K
k=1[vk]

2
m)1/2. Once this

is proved, combining it with (34) and (36) yields the desired bound on the entries of ṽ`−v` in (32):

|[ṽ` − v`]m| .
‖W‖2
δ`

(
K∑
k=1

[vk]
2
m

)1/2

+
1

δ`

(
|〈wm, ṽ

(m)
` 〉|+ ‖wm‖2|[ṽ(m)

` ]m|
)

.
‖W‖2
δ`

(
K∑
k=1

[vk]
2
m

)1/2

+
|〈wm, ṽ

(m)
` 〉|

δ`
,
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where, in the first inequality, we used |λ̃`| ≥ |λ`| − ‖W‖2 ≥ δ` − δ`/5 = 4δ`/5, and in the second
inequality, we used ‖wm‖2 ≤ ‖W‖2 and the claim.

Step 4: Finally, we prove our claim that |[ṽ(m)
` ]m| . (

∑K
k=1[vk]

2
m)1/2. By definition, λ̃

(m)
` ṽ

(m)
` =

(A + W(m))ṽ
(m)
` . Note that the mth row of W(m)ṽ

(m)
` is 0, since W(m) has only zeros in its mth

row. Thus,

[ṽ
(m)
` ]m =

(
[ṽ

(m)
` ]m − [v`]m

)
+ [v`]m =

[Aṽ
(m)
`

λ̃
(m)
`

− v`

]
m

+ [v`]m.

With an argument similar to the one that leads to (34), we can bound the first term on the
right-hand side. ∣∣∣∣∣[Aṽ

(m)
`

λ̃
(m)
`

− v`

]
m

∣∣∣∣∣ . ‖W(m)‖2
δ`

(
K∑
k=1

[vk]
2
m

)1/2

≤

(
K∑
k=1

[vk]
2
m

)1/2

.

Clearly, |[v`]m| is also upper bounded by the right-hand side above. This proves our claim and
concludes the proof.

Proof of Corollary 2.2. Let us construct symmetric matrices A,W,W̃ of size n+ p via a standard
dilation technique (Paulsen, 2002). Define

A =

(
0 L

L> 0

)
, W =

(
0 E

E> 0

)
, and Ã = A + W.

It can be checked that rank(A) = 2K, and importantly,

A =
1

2

K∑
k=1

σk

(
uk
vk

)(
u>k v>k

)
− 1

2

K∑
k=1

σk

(
uk
−vk

)(
u>k −v>k

)
. (37)

Step 1: Check the conditions of Theorem 2.4. The nonzero eigenvalues of A are ±σk, (k ∈ [K]),
and the corresponding eigenvectors are (u>k ,±v>k )>/

√
2 ∈ Rn+p. It is clear that the eigenvalue

condition |λ`| � maxk∈[K] |λk| in Theorem 2.4 is satisfied, and the eigen-gap δ` of A is exactly γ`.
Since the identity (37) holds for any matrix constructed from dilation, by applying it to W we get
‖W‖2 = ‖E‖2.

Step 2: Apply the conclusion of Theorem 2.4. Similarly as before, we write W(m) as the matrix
obtained by setting mth row and mth column of W to zero, where m ∈ [n + p]. We also denote
Ã(m) = A + W(m). Using a similar argument as Step 1, we find

(1) the eigenvectors of Ã are

(
ũk
±ṽk

)
/
√

2,

(2) the eigenvectors of Ã(i) are

(
∗
±ṽ

(i)
k

)
/
√

2, ∀ i ∈ [n], and

(3) the eigenvectors of Ã(n+j) are

(
ũ

(j)
k

∗

)
/
√

2, ∀ j ∈ [p],
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where ∗ means some appropriate vectors we do not need in the proof (we do not bother introducing
notations for them). We also observe that

wm =

{
( 0 erow

i )>, m = i ∈ [n]

( (ecol
j )> 0 )>, m = n+ j, j ∈ [p]

Note that the inner product between wm and the eigenvector of Ã(m) is 〈(erow
i )>,±ṽ

(i)
k 〉 if m = i ∈

[n], or 〈ecol
j , ũ

(j)
k 〉 if m = n+ j, j ∈ [p]. Therefore, applying Theorem 2.4 to the first n entries of

1√
2

(
ũ` − u`
ṽ` − v`

)
,

we obtain the first inequality of Corollary 2.2, and applying Theorem 2.4 to the last p entries leads
to the second inequality.

Proof of Lemma 3.1.

Eε[‖X>β̂K −X>β∗‖22/n] = Eε[‖QKΣKP>Kβ
∗ + QKQ>Kε−X>β∗‖22/n]

= Eε[‖QKQ>Kε−QK+ΣK+P>K+β
∗‖22/n]

=
Kσ2

n
+ β∗>PK+︸ ︷︷ ︸

α>

Σ2
K+ P>K+β

∗︸ ︷︷ ︸
α

.

=
Kσ2

n
+

d∑
j=K+1

λ2
jα

2
j .
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Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 48. Institut Henri Poincaré.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral research
1 245–276.

Chamberlain, G. and Rothschild, M. (1982). Arbitrage, factor structure, and mean-variance
analysis on large asset markets.

Cohen, M. B., Nelson, J. and Woodruff, D. P. (2015). Optimal approximate matrix product
in terms of stable rank. arXiv preprint arXiv:1507.02268 .

Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a perturbation. iii. SIAM
Journal on Numerical Analysis 7 1–46.

Desai, K. H. and Storey, J. D. (2012). Cross-dimensional inference of dependent high-
dimensional data. Journal of the American Statistical Association 107 135–151.

Dobriban, E. (2017). Factor selection by permutation. arXiv preprint arXiv:1710.00479 .

Donoho, D. L., Gavish, M. and Johnstone, I. M. (2013). Optimal shrinkage of eigenvalues in
the spiked covariance model. arXiv preprint arXiv:1311.0851 .

Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of the
American Statistical Association 102 93–103.

Efron, B. (2010). Correlated z-values and the accuracy of large-scale statistical estimates. Journal
of the American Statistical Association 105 1042–1055.

Eldridge, J., Belkin, M. and Wang, Y. (2017). Unperturbed: spectral analysis beyond Davis-
Kahan. arXiv preprint arXiv:1706.06516 .

Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds.
Journal of financial economics 33 3–56.

Fan, J., Fan, Y. and Lv, J. (2008). High dimensional covariance matrix estimation using a factor
model. Journal of Econometrics 147 186–197.

Fan, J. and Han, X. (2017). Estimation of the false discovery proportion with unknown depen-
dence. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79 1143–1164.

Fan, J., Han, X. and Gu, W. (2012). Estimating false discovery proportion under arbitrary
covariance dependence. Journal of the American Statistical Association 107 1019–1035.

Fan, J., Ke, Y., Sun, Q. and Zhou, W.-X. (2017a). Farm-test: Factor-adjusted robust multiple
testing with false discovery control. arXiv preprint arXiv:1711.05386 .

Fan, J., Ke, Y. and Wang, K. (2016a). Decorrelation of covariates for high dimensional sparse
regression. arXiv preprint arXiv:1612.08490 .

37



Fan, J., Li, Q. and Wang, Y. (2017b). Estimation of high dimensional mean regression in the
absence of symmetry and light tail assumptions. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 79 247–265.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association 96 1348–1360.

Fan, J., Liao, Y. and Mincheva, M. (2011). High-dimensional covariance matrix estimation in
approximate factor models. The Annals of Statistics 39 3320–3356.

Fan, J., Liao, Y. and Mincheva, M. (2013). Large covariance estimation by thresholding prin-
cipal orthogonal complements. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 75 603–680.

Fan, J., Liu, H. and Wang, W. (2018a). Large covariance estimation through elliptical factor
models. Annals of Statistics 46 1383–1414.

Fan, J., Wang, W. and Zhong, Y. (2018b). An `∞ eigenvector perturbation bound and its
application. Journal of Machine Learning Research 18 1–42.

Fan, J., Wang, W. and Zhu, Z. (2016b). A shrinkage principle for heavy-tailed data: High-
dimensional robust low-rank matrix recovery. arXiv preprint arXiv:1603.08315 .

Friguet, C., Kloareg, M. and Causeur, D. (2009). A factor model approach to multiple
testing under dependence. Journal of the American Statistical Association 104 1406–1415.

Gao, C., Ma, Z., Zhang, A. Y. and Zhou, H. H. (2015). Achieving optimal misclassification
proportion in stochastic block model. arXiv preprint arXiv:1505.03772 .

Hirzel, A. H., Hausser, J., Chessel, D. and Perrin, N. (2002). Ecological-niche factor
analysis: how to compute habitat-suitability maps without absence data? Ecology 83 2027–
2036.

Hochreiter, S., Clevert, D.-A. and Obermayer, K. (2006). A new summarization method
for affymetrix probe level data. Bioinformatics 22 943–949.

Holland, P. W., Laskey, K. B. and Leinhardt, S. (1983). Stochastic blockmodels: First
steps. Social networks 5 109–137.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika
30 179–185.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of educational psychology 24 417.

Hsu, D. and Kakade, S. M. (2013). Learning mixtures of spherical gaussians: moment methods
and spectral decompositions. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science. ACM.

Huber, P. J. (1964). Robust estimation of a location parameter. The annals of mathematical
statistics 73–101.

38



Jin, J. (2015). Fast community detection by score. The Annals of Statistics 43 57–89.

Johnstone, I. M. and Lu, A. Y. (2009). On consistency and sparsity for principal components
analysis in high dimensions. Journal of the American Statistical Association 104 682–693.

Jolliffe, I. T. (1986). Principal component analysis and factor analysis. In Principal component
analysis. Springer, 115–128.

Kendall, M. G. (1965). A course in multivariate analysis .

Keshavan, R. H., Montanari, A. and Oh, S. (2010). Matrix completion from noisy entries.
Journal of Machine Learning Research 11 2057–2078.

Kneip, A. and Sarda, P. (2011). Factor models and variable selection in high-dimensional re-
gression analysis. The Annals of Statistics 39 2410–2447.

Koltchinskii, V. and Lounici, K. (2017). Concentration inequalities and moment bounds for
sample covariance operators. Bernoulli 23 110–133.

Koltchinskii, V. and Xia, D. (2016). Perturbation of linear forms of singular vectors under
gaussian noise. In High Dimensional Probability VII. Springer, 397–423.

Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: inference for the
number of factors. The Annals of Statistics 40 694–726.

Lawley, D. and Maxwell, A. (1962). Factor analysis as a statistical method. Journal of the
Royal Statistical Society. Series D (The Statistician) 12 209–229.

Leek, J. T. and Storey, J. D. (2008). A general framework for multiple testing dependence.
Proceedings of the National Academy of Sciences 105 18718–18723.

Lelarge, M. and Miolane, L. (2016). Fundamental limits of symmetric low-rank matrix esti-
mation. arXiv preprint arXiv:1611.03888 .

Li, Q., Cheng, G., Fan, J. and Wang, Y. (2017). Embracing the blessing of dimensionality in
factor models. Journal of the American Statistical Association 1–10.

McCrae, R. R. and John, O. P. (1992). An introduction to the five-factor model and its
applications. Journal of personality 60 175–215.

Minsker, S. (2016). Sub-gaussian estimators of the mean of a random matrix with heavy-tailed
entries. arXiv preprint arXiv:1605.07129 .

Mor-Yosef, L. and Avron, H. (2018). Sketching for principal component regression. arXiv
preprint arXiv:1803.02661 .

Ng, A. Y., Jordan, M. I. and Weiss, Y. (2002). On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues.
The Review of Economics and Statistics 92 1004–1016.

39



Onatski, A. (2012). Asymptotics of the principal components estimator of large factor models
with weakly influential factors. Journal of Econometrics 168 244–258.

O’Rourke, S., Vu, V. and Wang, K. (2016). Eigenvectors of random matrices: a survey. Journal
of Combinatorial Theory, Series A 144 361–442.

O’Rourke, S., Vu, V. and Wang, K. (2017). Random perturbation of low rank matrices:
Improving classical bounds. Linear Algebra and its Applications .

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance
model. Statistica Sinica 1617–1642.

Paul, D., Bair, E., Hastie, T. and Tibshirani, R. (2008). ” preconditioning” for feature
selection and regression in high-dimensional problems. The Annals of Statistics 1595–1618.

Paulsen, V. (2002). Completely bounded maps and operator algebras, vol. 78. Cambridge Univer-
sity Press.

Pearson, K. (1901). Principal components analysis. The London, Edinburgh and Dublin Philo-
sophical Magazine and Journal 6 566.

Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-dimensional
stochastic blockmodel. The Annals of Statistics 39 1878–1915.

Sedghi, H., Janzamin, M. and Anandkumar, A. (2016). Provable tensor methods for learning
mixtures of generalized linear models. In Artificial Intelligence and Statistics.

Shkolnisky, Y. and Singer, A. (2012). Viewing direction estimation in cryo-EM using synchro-
nization. SIAM journal on imaging sciences 5 1088–1110.

Spearman, C. (1927). The abilities of man. .

Srivastava, N. and Vershynin, R. (2013). Covariance estimation for distributions with 2 + ε
moments. The Annals of Probability 41 3081–3111.

Stewart, G. and Sun, J. (1990). Matrix perturbation theory .

Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a large
number of predictors. Journal of the American statistical association 97 1167–1179.

Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 64 479–498.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological) 267–288.

Tron, R. and Vidal, R. (2009). Distributed image-based 3-D localization of camera sensor net-
works. In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. IEEE.

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics 12 389–434.

40



Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027 .

Vershynin, R. (2012). How close is the sample covariance matrix to the actual covariance matrix?
Journal of Theoretical Probability 25 655–686.

Wang, H. (2012). Factor profiled sure independence screening. Biometrika 99 15–28.

Wang, J., Zhao, Q., Hastie, T. and Owen, A. B. (2017). Confounder adjustment in multiple
hypothesis testing. The Annals of Statistics 45 1863–1894.

Wang, W. and Fan, J. (2017). Asymptotics of empirical eigenstructure for high dimensional
spiked covariance. Ann. Statist. 45 1342–1374.

Wedin, P.-A. (1972). Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics 12 99–111.

Woodruff, D. P. (2014). Sketching as a tool for numerical linear algebra. Foundations and
Trends R© in Theoretical Computer Science 10 1–157.

Yang, J., Meng, X. and Mahoney, M. W. (2016). Implementing randomized matrix algorithms
in parallel and distributed environments. Proceedings of the IEEE 104 58–92.

Yi, X., Caramanis, C. and Sanghavi, S. (2016). Solving a mixture of many random linear equa-
tions by tensor decomposition and alternating minimization. arXiv preprint arXiv:1608.05749
.

Yu, Y., Wang, T. and Samworth, R. J. (2014). A useful variant of the davis–kahan theorem
for statisticians. Biometrika 102 315–323.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal of Machine learning
research 7 2541–2563.

Zhong, Y. (2017). Eigenvector under random perturbation: A nonasymptotic Rayleigh-Schrö
dinger theory. arXiv preprint arXiv:1702.00139 .

Zhong, Y. and Boumal, N. (2018). Near-optimal bounds for phase synchronization. SIAM
Journal on Optimization 28 989–1016.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 67 301–320.

41


	1 Introduction
	2 Factor models and PCA
	2.1 Relationship between PCA and factor models in high dimensions
	2.2 Estimating the number of factors
	2.3 Robust covariance inputs
	2.4 Perturbation bounds

	3 Applications to High-dimensional Statistics
	3.1 Covariance estimation
	3.2 Principal component regression with random sketch
	3.3 Factor-Adjust Robust Multiple (FARM) tests
	3.4 Factor-Adjusted Robust Model (FARM) selection

	4 Related learning problems
	4.1 Gaussian mixture model
	4.2 Community detection
	4.3 Matrix completion
	4.4 Synchronization problems

	A Proofs

