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Abstract. Big data have enabled decision makers to tailor decisions at the individual level
in a variety of domains, such as personalized medicine and online advertising. Doing so
involves learning a model of decision rewards conditional on individual-specific cova-
riates. In many practical settings, these covariates are high dimensional; however, typically
only a small subset of the observed features are predictive of a decision’s success. We
formulate this problem as a K-armed contextual bandit with high-dimensional covariates
and present a new efficient bandit algorithm based on the LASSO estimator. We prove
that our algorithm’s cumulative expected regret scales at most polylogarithmically in
the covariate dimension d; to the best of our knowledge, this is the first such bound for
a contextual bandit. The key step in our analysis is proving a new tail inequality that
guarantees the convergence of the LASSO estimator despite the non-i.i.d. data induced by
the bandit policy. Furthermore, we illustrate the practical relevance of our algorithm by
evaluating it on a simplified version of a medication dosing problem. A patient’s optimal
medication dosage depends on the patient’s genetic profile and medical records; incorrect
initial dosage may result in adverse consequences, such as stroke or bleeding. We show
that our algorithm outperforms existing bandit methods and physicians in correctly dosing
a majority of patients.
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1. Introduction
The growing availability of user-specific data pro-
vides a unique opportunity for decision makers to
personalize service decisions for individuals. In health-
care, doctors can personalize treatment choices based
on patient biomarkers and clinical history. For ex-
ample, the BATTLE trial demonstrated that the ef-
fectiveness of different chemotherapeutic agents on a
cancer patient depends on the molecular biomarkers
found in the patient’s tumor biopsy; thus, personal-
izing the chemotherapy regimen led to increased
treatment success rates (Kim et al. 2011). Similarly, in
marketing, companies may achieve greater conver-
sion rates by targeting advertisements or promotions
based on user demographics and search key words.
Personalization is typically achieved by (a) learn-
ing a model that predicts a user’s outcome for each
available decision as a function of the user’s observed
covariates and (b) using this model to inform the
chosen decision for subsequent new users (see, e.g.,

He et al. 2012, Bertsimas and Kallus 2014, Chen et al.
2015, Ban and Rudin 2019).
However, the increased variety of potentially rel-

evant user data poses greater challenges for learning
such predictive models because user covariates may
be high dimensional. For instance, medical decision
making may involve extracting patient covariates
from electronic health records (containing informa-
tion on laboratory tests, diagnoses, procedures, and
medications) or genetic or molecular biomarker pro-
files. The resulting number of covariates in medical
decision-making problems can be as many as a few
thousand (in Bayati et al. 2014) or tens of thousands
(in Razavian et al. 2015). Similarly, user covariates in
web marketing are often high dimensional, because
they include relevant but fine-grained data on past
clicks and purchases (Naik et al. 2008). Learning ac-
curate predictive models from high-dimensional data
statistically requires many user samples. These samples
are often obtained through randomized trials on initial
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users, but this may be prohibitively costly in the high-
dimensional setting.

Predictive algorithms, such as the LASSO (Tibshirani
1996, Chen et al. 1998), help alleviate this issue by
producing good estimates using far fewer user sam-
ples than traditional statistical models (Candes and
Tao 2007, Bickel et al. 2009, Bühlmann and Van De
Geer 2011). In particular, the LASSO identifies a sparse
subset of predictive covariates, which is an effective
approach for treatment effect estimation in practice
(Belloni et al. 2014, Athey et al. 2016). For example, the
BATTLE cancer trial found that only a few of many
available patient biomarkers were predictive of the
success of any given treatment (Kim et al. 2011). Sim-
ilarly, variable selection is often used to predict In-
ternet users’ click-through rates in online advertising
(see, e.g., Yan et al. 2014).

However, we must be careful not to sacrifice as-
ymptotic performance when using such techniques.
They create substantial bias in our estimates to in-
crease predictive accuracy for small sample sizes.
Thus, it is valuable to incorporate new observations
and carefully tune the bias-variance trade-off over
time to ensure good performance for both initial users
(data-poor regime) and later users (data-rich regime).
This can be performed online: after making a decision,
we learn from the resulting reward, for example, how
well a treatment worked for a patient or the profit
from an advertisement. This process suffers from
bandit feedback; that is, we only obtain feedback for the
chosen decision and we do not observe (counterfac-
tual) rewards for alternate actions. For example, we
may incorrectly conclude that a particular action is
low-reward early on and discard it based on (un-
certain) estimates; then we may never identify our
mistake and perform poorly in the long term, because
we will not observe the counterfactual reward for
this action without choosing it. Therefore, while we
seek to leverage our current estimates to optimize
decisions (exploitation), we must also occasionally ex-
periment with each available action to improve our
estimates (exploration).

This exploration-exploitation trade-off has been
studied in the framework of contextual bandits (Auer
2003, Langford and Zhang 2008). Although many al-
gorithms have been proposed and analyzed in the
literature, they typically optimize asymptotic perfor-
mance (when the number of users T grows large) and
may not perform well in the data-poor regime. In
particular, the performance of all existing algorithms
scales polynomially in the number of covariates d, and
provide no theoretical guarantees when the number
of users T is of order d (see, e.g., Goldenshluger and
Zeevi 2013), even when the underlying model is
known to be sparse (Abbasi-Yadkori et al. 2012).
Thus, such algorithms may essentially randomize on

the initial 2(d) individuals, which as discussed ear-
lier, may be prohibitively costly in high-dimensional
settings.
In this paper, we propose a new algorithm (the

LASSO Bandit) that addresses these shortcomings.
In particular, we adapt the LASSO estimator to the
bandit setting and tune the resulting bias-variance
trade-off over time to gracefully transition from the
data-poor to the data-rich regime. We prove theo-
retical guarantees that our algorithm achieves good
performance as soon as the number of users T is
polylogarithmic in d, which is an exponential improve-
ment over existing theory. Simulations confirm our
theoretical results. Finally, we empirically demon-
strate the potential benefit of our algorithm in a
medical decision-making context by evaluating it on
the clinical task of warfarin dosing with real patient
data. In general, evaluating a bandit algorithm ret-
rospectively on data is challenging, because we re-
quire access to counterfactuals; we choose warfa-
rin dosing as our case study, because this unique
data set gives us access to such counterfactuals under
some simplifying assumptions. We find that our al-
gorithm significantly outperforms other bandit methods
and outperforms the benchmark policy used in prac-
tice by physicians after observing 200 patients. In
particular, the LASSO Bandit successfully leverages
limited available data to make better decisions for
initial patients, while continuing to perform well in
the data-rich regime.

1.1. Main Contributions
We introduce the LASSO Bandit, a new statistical
decision-making algorithm that efficiently leverages
high-dimensional user covariates in the bandit setting
by learning LASSO estimates of decision rewards. Be-
low, we highlight our contributions in three categories.

1.1.1. Algorithm. Our algorithm builds on an existing
algorithm in the low-dimensional bandit setting by
Goldenshluger and Zeevi (2013) that uses ordinary
least squares (OLS) estimation. We use LASSO esti-
mation in the high-dimensional setting, which in-
troduces the key additional step of selecting a regu-
larization path. We specify such a path to optimally
control the convergence of our LASSO estimators by
trading off bias and variance over time.

1.1.2. Theory. We measure performance using the
standard notion of expected cumulative regret, which is
the total expected deficit in reward achieved by our
algorithm compared with an oracle that knows all
the problem parameters. Our main result establishes
that the LASSO Bandit asymptotically achieves ex-
pected cumulative regret that scales polylogarithmi-
cally with the dimension of the covariates. The technical
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challenge is that the bandit policy induces non-i.i.d.
samples from each arm during the exploitation phase.
In particular, even though the sequence of all covariates
consists of i.i.d. samples from a fixed distribution, the
subset of covariates forwhich the outcome of a fixed arm
is observedmaynot be i.i.d. In low-dimensional settings,
this is typically addressed using martingale matrix
Chernoff inequalities (Tropp 2015). We prove analo-
gous results in the high-dimensional setting for the
convergence of the LASSO estimator using matrix per-
turbation theory and martingale concentration results.
In particular, we prove a new tail inequality for the
LASSO (that may be of independent interest) that holds
with high probability even when an unknown portion
of the samples are generated by a non-i.i.d. process.

We further derive an optimal specification for the
LASSO regularization parameters, and prove that the
resulting cumulative regret of the LASSO Bandit over
T users is at most 2 s20 [logT + log d]2( )

, where s0 � d
is the number of relevant covariates. To the best of
our knowledge, the LASSO Bandit achieves the first
regret bound that scales polylogarithmically in both
d and T, making it suitable for leveraging high-
dimensional data without experimenting on a large
number of users. As a secondary contribution, our
techniques also can be used to improve existing regret
bounds in the low-dimensional setting by a factor
of d for the OLS Bandit (a variant of the algorithm
by Goldenshluger and Zeevi (2013)) under the same
problem setting and weaker assumptions.

1.1.3. Empirics. We compare the performance of the
LASSO Bandit against existing algorithms in the ban-
dit literature. Simulations on synthetic data demon-
strate that the LASSO Bandit significantly outperforms
these alternatives in cumulative regret. Surprisingly,
we find that our algorithm can significantly improve
upon these baselines even in “low-dimensional” settings.

More importantly, we evaluate the potential value
of our algorithm in a medical decision-making con-
text using a real patient data set on warfarin (a widely
prescribed anticoagulant). Here, we apply the LASSO
Bandit to learn an optimal dosing strategy using pa-
tients’ clinical and genetic factors. We show that our
algorithm significantly outperforms existing bandit
algorithms to correctly dose a majority of patients.
Furthermore, our algorithm outperforms the current
benchmark policy used in practice by physicians af-
ter observing 200 patients. Finally, we evaluate the
trade-off between increased patient risk and im-
proved dosing and find that our algorithm increases
the risk of incorrect dosing for a small number of pa-
tients in return for a large improvement in average
dosing accuracy. We note that we do not take advan-
tage of certain information structures that are specific

to the warfarin dosing problem (see Section 5 for
details); exploiting this structure could potentially
result in even better algorithms specifically tailored
for warfarin dosing, but developing such an algo-
rithm is beyond the scope of our paper.

1.2. Related Literature
As discussed earlier, there is a significant OR/MS
literature on learning predictive models from his-
torical data and using such models to inform context-
specific decision making (e.g., Bertsimas and Kallus
2014, Ban and Rudin 2019). In contrast, our work
addresses the problem of learning these predictive
models online under bandit feedback (i.e., we only
observe feedback for the chosen decision, as is often
the case in practice), which results in an exploration-
exploitation trade-off.
There is a rich literature on the exploration-exploitation

trade-off in the contextual bandit framework (also
known as contextual bandits or linear bandits with
changing action space) from OR/MS, computer science,
and statistics. One approach is to make no parametric
assumptions about arm rewards. For example, Rigollet
and Zeevi (2010), Perchet and Rigollet (2013), and
Slivkins (2014) analyze settings in which the arm re-
wards are given by any smooth, nonparametric func-
tion of the observed covariates. However, these algo-
rithms perform very poorly in high dimension as the
cumulative regret depends exponentially on the covar-
iate dimension d.
Thus, much of the bandit literature (including the

present paper) has focused on the case in which the
arm rewards are linear functions of the covariates;
this setting was first introduced by Auer (2003) and
was subsequently improved by UCB-type algori-
thms by Dani et al. (2008), Rusmevichientong and
Tsitsiklis (2010), Abbasi-Yadkori et al. (2011), Chu
et al. (2011), and Deshpande and Montanari (2012).
(Note that some of these papers study the linear
bandit, which is different from a contextual bandit;
however, the theoretical guarantees of a linear bandit
can be mapped to theoretical guarantees for a con-
textual bandit if the feasible action set for the linear
bandit is allowed to change exogenously over time
(Abbasi-Yadkori 2012).) These algorithms use the
idea of optimism-in-the-face-of-uncertainty (OFU),
which elegantly solves the exploration-exploitation
trade-off by maintaining confidence sets for arm
parameter estimates and choosing arms optimistically
from within these confidence sets. Follow-up work
demonstrated that similar guarantees can be achieved
using a posterior sampling algorithm (Agrawal and
Goyal 2013, Russo and Van Roy 2014b). We also note
that Carpentier and Munos (2012) tackle a linear
bandit in the high-dimensional sparse setting, but
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they use a nonstandard definition of regret and do
not consider the relevant case in which the action
set changes over time.

However, this literature typically does not make
any assumptions on how the user covariates Xt are
generated. In particular, they allow for arbitrarily
constructed covariate sequences that may be generated
by an adversary to make learning difficult; chapter 3 of
Bubeck and Cesa-Bianchi (2012) provides a detailed
survey of “adversarial bandits.” For example, if Xt is
equal to a fixed vector X that does not change over
time, it is impossible to learn more than one para-
meter per arm. This may explain why the current-best
cumulative regret bounds are givenby:2(d ̅

T̅
√ ) in the low-

dimensional setting (Dani et al. 2008, Abbasi-Yadkori
et al. 2011) and2( ̅̅̅̅̅̅̅

ds0T
√ ) in the high-dimensional sparse

setting (Abbasi-Yadkori et al. 2012). Note that such
algorithms still achieve regret that is polynomial in
d and T, implying slow rates of convergence. In par-
ticular, when T � 2(d) (the regime of interest here), these
regret bounds are no longer sublinear in T.

Remark 1. Several of the above-mentioned papers
also have “problem-dependent” bounds that scale as
2(logT) for the linear bandit (see, e.g., Abbasi-Yadkori
et al. 2011). These bounds only apply when there is a
fixed constant gap between the mean rewards of any
pair of arms; they do not apply to a contextual bandit,
because there is no such constant gap. In our setting,
the mean rewards of arm i and j can be arbitrarily close
as a function of the observed covariates Xt at time t.
We remark further on this point in Section 2.1.

Yet assuming covariate sequences can be selected
completely arbitrarily constitutes a pessimistic en-
vironment that is unlikely to occur in practical set-
tings. For example, in healthcare, the treatment
choices made for one patient do not directly affect the
health status of the next patient, suggesting that cova-
riates are roughly i.i.d. Thus, we focus on the case in
which covariates are generated i.i.d. from an unknown
fixed distribution, where we can achieve exponentially
better regret bounds. This insight was first noted by
Goldenshluger and Zeevi (2013), who presented a
novel algorithm that carefully trades off between a
biased and an unbiased arm parameter estimate; as
a result, they prove a corresponding upper bound
of 2(d3 logT) on cumulative regret, which signifi-
cantly improves the 2(d ̅

T̅
√ ) bound for arbitrary co-

variate sequences as T grows large. We adapt this
idea to the high-dimensional setting using LASSO
estimators. However, we require a much tighter re-
gret analysis as well as new convergence results on
LASSO estimators, which we use to prove a regret
bound of 2(s20[logT + log d]2). Note that we relax the

polynomial dependence on d to a polylogarithmic
factor by leveraging sparsity. As a consequence of our
new proof technique, we also improve the regret
bound in the low-dimensional setting from 2(d3 logT)
(Goldenshluger and Zeevi 2013) to 2(d2 log3

2 d · logT).
These results hold while allowing for some arms to
be uniformly suboptimal; in contrast, the formula-
tion in Goldenshluger and Zeevi (2013) requires the
assumption that every arm is optimal for some sub-
set of users.

Remark 2. It is worth comparing both bounds in the
low-dimensional setting in which all covariates are
relevant, that is, s0 � d. In this setting, we show that the
OLS Bandit achieves 2(d2 log3

2 d · logT) regret, while the
LASSO Bandit achieves a slightly worse upper bound
of 2(d2[logT + log d]2) regret. This difference arises
from the weaker convergence results established for
the LASSO as opposed to the least squares estimator
(see Section 4). However, when s0 � d (as is often the
case in practical high-dimensional settings), the LASSO
Bandit can achieve exponentially better regret (in the
ambient dimension d) by leveraging sparse structure.

Past theoretical analysis of high-dimensional ban-
dits has not used LASSO techniques. In particular,
Carpentier andMunos (2012) use randomprojections;
Deshpande and Montanari (2012) use �2-regularized
regression; and Abbasi-Yadkori et al. (2012) use Seq-
SEW. Our proofs rely on existing literature about oracle
inequalities that guarantee convergence of LASSO
estimators (Candes and Tao 2007, Bickel et al. 2009,
Bühlmann and Van De Geer 2011, Negahban et al.
2012); a technical contribution of our work is prov-
ing a new LASSO tail inequality that can be used on
non-i.i.d. data induced by the bandit policy, which
may be of independent interest.
There also has been interest in posterior sampling

and information-directed sampling methods (Russo
and Van Roy 2014a, b), which show evidence of im-
proved empirical performance on standard bandit
problems. These algorithms do not yet have theo-
retical guarantees for our setting that are competitive
with existing bounds described above. Developing
algorithms of this flavor and corresponding regret
bounds for our settingmay be a promising avenue for
future work.
Finally, our paper is also related to recent papers in

the operations management literature at the inter-
section of machine learning and multiarmed bandits.
Kallus and Udell (2016) use low-rank matrix com-
pletion for dynamic assortment optimization with a
large number of customers, and Elmachtoub et al.
(2017) introduce a novel bootstrap-inspired method
for performing Thompson sampling using decision
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trees. In contrast, our work focuses on developing
provable guarantees for bandits with covariates un-
der the LASSO estimator; to that end, we introduce
new theoretical results for the LASSO with adapted
sequences of (possibly non-i.i.d.) observations.

The remainder of the paper is organized as follows.
We describe the problem formulation and assump-
tions in Section 2. We present the LASSO Bandit al-
gorithm and our main result on the algorithm’s per-
formance in Section 3; the key steps of the proof are
outlined in Section 4. Finally, empirical results on
simulated data and our evaluation on real patient
data for the task of warfarin dosing are presented
in Section 5. All proofs, robustness checks, and our
secondary result in the low-dimensional setting are
relegated to the online appendix.

2. Problem Formulation
We now describe the standard problem formula-
tion for a bandit with covariates and linear arm re-
wards (as introduced by Auer (2003) and others).
We start by introducing some notation that will be
used throughout the paper.

2.1. Notation
For any integer n, we will let [n] denote the set
{1, . . . ,n}. For any index set I ⊂ [d], and a vector β ∈ Rd,
let βI ∈ Rd be the vector obtained by setting the ele-
ments of β that are not in I to zero. For a vector v ∈ Rm,
let the support of v (denoted supp(v)) to be the set of
indices corresponding to nonzero entries of v. For any
vector X or matrix X, the infinity norm (i.e., ‖ · ‖∞) is
the maximum absolute value of its entries. We also
use R+ and Z+ to refer to positive reals and integers
respectively, and use Rd×d	0 for the set of d by d positive
semidefinite matrices.

Let T be the number of (unknown) time steps; at
each time step, a new user arrives, andwe observe her
individual covariates Xt. The observed sequence of
covariates {Xt}t≥1 consist of random vectors that are
drawn i.i.d. from a distribution3X over a deterministic
set - ⊂ Rd (see Remark 3 for a precise definition). The
decision maker has access to K arms (decisions) and
each arm yields an uncertain user-specific reward
(e.g., patient outcome or profit from a user conver-
sion). Each arm i has an unknown parameter βi ∈ Rd.
At time t, if we pull arm i ∈ [K], we yield reward

X�
t βi + εi,t,

where the εi,t are independent σ-subgaussian random
variables (see Definition 1) that are also independent
of the sequence {Xt′ }t′≥1. In Section EC.6.3 of the online
appendix, we numerically show how our approach
can be used even when the reward is a nonlinear
function of the covariates by using basis expansion

methods from statistical learning to approximate non-
linear functions.

Definition 1. A real-valued random variable z is σ-
subgaussian if E[etz] ≤ eσ

2t2/2 for every t ∈ R.

This definition implies E[z] � 0 and Var[z] ≤ σ2.
Many classical distributions are subgaussian; typi-
cal examples include any bounded, centered distri-
bution, or the normal distribution. Note that the er-
rors need not be identically distributed.

Remark 3. The reward function contains two stochastic
sources: the covariate vector Xt and the noise. There-
fore, we define the precise notion of the probability
space. Each Xt is a *-measurable vector-valued func-
tion on probability space (ΩX,*X,PrX). We also refer to
the distribution that Xt induces on Rd by3X; that is, for
any Borel set A of Rd, we have PrX(Xt ∈ A) � 3X(A).
Similarly, each noise εi,t is a real-valued random vari-
able with probability space (Ωε,*ε,Prε). Throughout
the paper all probabilities and expectations are with
respect to the product measure PrX ×Prε. To simplify
notation, we will use E and Pr to refer to “expectation”
and “probability” with respect to this product mea-
sure, unless the probability measure is specified as a
subindex.

Our goal is to design a sequential decision-making
policy π that learns the arm parameters {βi} over time
in order to maximize expected reward for each in-
dividual. Let πt ∈ [K]denote the arm chosen by policy
π at time t ∈ [T]. We compare ourselves to an ora-
cle policy π∗ that already knows the {βi} (but not
the noise ε) and thus always chooses the best ex-
pected arm π∗

t � maxj(X�
t βj). Thus, if we choose arm

πt � i at time t, we incur expected regret

rt ≡ E
[
max

j
(X�

t βj) − X�
t βi

]
,

which is simply the difference in expected reward
between π∗

t and πt. We seek a policy π that minimizes
the cumulative expected regret RT ≡ ∑T

t�1 rt. In par-
ticular, if RT is small for policy π, then the perfor-
mance of π is similar to that of the oracle.
We additionally introduce the sparsity parameter

s0 ∈ [d], which is the smallest integer such that for all
i ∈ [K], we have ‖βi‖0 ≤ s0. (Note that this is trivially
satisfied for s0 � d.) Our algorithm has strong per-
formance guarantees when s0 � d, that is, when the
arm rewards are determined by only a small subset (of
size s0) of the d observed user-specific covariates in X.

2.2. Assumptions
We now describe the assumptions we require on the
problem parameters for our regret analysis. These
assumptions are adapted from the bandit literature
andwill be attributed in the text below. For simplicity,
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we introduce a specific example and show how each
assumption translates to the example. Later, we de-
scribe more generic examples that are encompassed
by our formulation.

2.2.1. Simple Example. Let the induced probability
distribution of covariates, 3X, be the uniform distri-
bution over the d-dimensional unit cube [0, 1]d. Con-
sider three arms whose corresponding arm parame-
ters are given by β1 � (1, 0, . . . , 0), β2 � (0, 1, 0, . . . , 0),
and β3 � (1/4, 1/4, 0, . . . , 0).
Assumption 1 (Parameter Set). There exist positive con-
stants xmax and b such that ‖x‖∞ ≤ xmax for all x ∈ - and
‖βi‖1 ≤ b for all i ∈ [K]. The former implies that any re-
alization of the random variable Xt satisfies ‖Xt‖∞ ≤ xmax
for all t.

Our first assumption is that the observed covari-
ate vector Xt as well as the arm parameters βi are
bounded. This is a standard assumption made in
the bandit literature (see, e.g., Rusmevichientong and
Tsitsiklis 2010), ensuring that the maximum regret
at any time step is bounded, that is, all realizations of
Xt satisfy |X�

t βi| ≤ b xmax by Cauchy-Schwarz for dual
norms ‖ · ‖∞ and ‖ · ‖1 on Rd. This is likely satisfied
because user covariates and outcomes are bounded
in practice. Our example clearly satisfies this assump-
tion with xmax � 1 and b � 1.

Assumption 2 (Margin Condition). There exists a con-
stant C0 ∈ R+ such that for all i and j in [K] where i �� j,
Pr 0 < |X� βi − βj

( )| ≤ κ
[ ] ≤ C0κ for all κ ∈ R+.
Our second assumption is a margin condition that

ensures that the density of the covariate distribu-
tion 3X should be bounded near a decision boundary,
that is, the intersection of the hyperplane given by
x�βi � x�βj
{ }

and - for any i �� j ∈ [K]. (Note that
the distribution of 3X can be such that point masses
on the decision boundary are allowed.) This as-
sumption was introduced into the classification lit-
erature by Tsybakov (2004) and highlighted in a
bandit setting by Goldenshluger and Zeevi (2013).
Intuitively, even small errors in our parameter esti-
mates can cause us to choose the wrong action (be-
tween arms i and j) for a realization of the covari-
ate vector Xt close to the decision boundary because
the rewards for both arms are nearly equal. Thus,
we can perform poorly if a disproportionate fraction
of observed covariate vectors is drawn near these
hyperplanes. Because the uniform distribution has
a bounded density everywhere in the simple exam-
ple above, this assumption is satisfied; a simple geo-
metric argument yields C0 � 2

̅̅
2

√
.

Assumption 3 (Arm Optimality). Let _opt and _sub be
mutually exclusive sets that include all K arms. Then there
exists some h > 0 such that: (a) suboptimal arms i ∈ _sub

satisfy x�βi < maxj��i x�βj − h for every x ∈ -; and (b) for
a constant p∗ > 0, each optimal arm i ∈ _opt has a corre-
sponding set

Ui ≡ x ∈ -
⃒⃒⃒
x�βi > max

j��i
x�βj + h

{ }
,

such that mini∈_opt Pr X ∈ Ui[ ] ≥ p∗.
Our third assumption is a less restrictive version

of an assumption introduced in Goldenshluger and
Zeevi (2013). In particular, we assume that our K
arms can be split into two sets:

a. Suboptimal arms _sub that are strictly subopti-
mal for all covariate vectors in -, that is, there exists
a constant hsub > 0 such that for each i ∈ _sub, x�βi <
maxj��i x�βj − hsub for every x ∈ -.

b. A nonempty set of optimal arms _opt that are
strictly optimal with positive probability for some
covariate vectors x ∈ -, that is, there exists a constant
hopt > 0 and some region Ui ⊂ - (with Pr[X ∈ Ui] �
pi > 0) for each i ∈ _opt such that x�βi > maxj ��i x�βj +
hopt for all covariate vectors x in Ui.
In other words, we assume that every arm is either

optimal (by a margin hopt) for some users (Assump-
tion 3b) or suboptimal (by a margin hsub) for all users
(Assumption 3a). For simplicity, in Assumption 3, we
define the localization parameter h � min hopt, hsub

{ }
and

p∗ � mini∈_opt pi. By construction, the regions Ui are
separated from all decision boundaries (by at least h in
reward space); thus, intuitively, small errors in our
parameter estimates are unlikely to make us choose
the wrong arm under the event X ∈ Ui for some
i ∈ _opt. Thus, wewill play each optimal arm i ∈ _opt at
least p∗ T times in expectation with high probability
(i.e., whenever the event X ∈ Ui occurs). This ensures
that we can quickly learn accurate parameter esti-
mates for all optimal arms over time. We will discuss
the choice of h later (see Remark 8 and Section EC.6.2
in the online appendix).
In our simple example, one can easily verify that

_opt � {β1, β2} and _sub � {β3}. We can choose any
value h ∈ (0, 1/2] with corresponding p∗ � (1 − h

̅̅
2

√ )2
for this setting.

Remark 4. We emphasize that Assumption 3 differs
from the “gap” assumptionmade in problem-dependent
bounds in the bandit literature (see, e.g., Abbasi-
Yadkori et al. 2011), which assumes that there ex-
ists some gap Δ > 0 between the rewards of the op-
timal arm i∗ and the next best arm, that is, Δ ≤
minj, x∈- x�(βi∗ − βj). In a general contextual bandit,
no Δ > 0 satisfies the gap assumption, because the
user covariate vector X can be drawn arbitrarily close
to the decision boundary for some βk (i.e., arbitrarily
close to the set {x ∈ - | x�βi∗ � x�βk}). Rather, Assump-
tion 3 posits that such a gap exists (Δ � h) only with
some probability p∗ > 0. While the “gap” assumption
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does not hold for most covariate distributions (e.g.,
uniform), our assumption holds for a very wide class
of continuous and discrete covariate distributions (as
we will discuss below).

We state a definition for our final assumption,
which is drawn from the high-dimensional statistics
literature (Bühlmann and Van De Geer 2011).

Definition 2 (Compatibility Condition). For any set of
indices I ⊆ [d] and a positive and deterministic con-
stant φ, define the set of matrices

#(I,φ) ≡ M ∈ Rd× d
	0 | ∀v ∈ Rd s.t. ‖vIc‖1 ≤ 3‖vI‖1,

{
we have ‖vI‖21 ≤ |I| (v�Mv)/φ2}.

Assumption 4 (Compatibility Condition). There exists a
constantφ0 > 0 such that for each i ∈ _opt,Σi ∈ #(supp(βi),
φ0), where we define Σi ≡ E XX� |X ∈ Ui[ ].

Our fourth and final assumption concerns the co-
variance matrix1 of samples restricted to the regions
Ui for each i ∈ _opt. In particular, we require that Σi ≡
EX∼3X XX� |X ∈ Ui[ ] belongs to the set #(supp(βi),φ0)
with some constant φ0 > 0 (Definition 2). This as-
sumption is required for the identifiability of LASSO
estimates trained on samples X ∈ Ui (Candes and Tao
2007, Bickel et al. 2009, Bühlmann and Van De Geer
2011, Negahban et al. 2012). Aswediscussed earlier in
Assumption 3, for each i ∈ _opt, we expect to play arm
i at least p∗T � 2(T) times based on samples X ∈ Ui.
The compatibility condition ensures that a LASSO
estimator trained on these samples will converge to
the true parameter vector βi with high probability as
the number of samples grows to infinity. We will
discuss the LASSO estimator and its convergence
properties in detail in Section 3.1.

Note that a standard assumption in OLS estima-
tion is that the matrix Σi be positive-definite, that is,
λmin Σi( ) > 0. It can be easily verified that if Σi is
positive-definite, then it belongs to #(I, ̅̅̅̅̅̅̅̅̅̅̅

λmin Σi( )√ )
for any set I ⊆ [d]. Thus, the compatibility condition
is weaker than the requirement that Σi be positive-
definite.

In our example, the events X ∈ Ui (defined by any
allowable choice of h ∈ (0, 1/2]) for each i ∈ _opt have
positive probability, and the matrices Σi are positive
definite. Note that smaller choices of h (which gen-
erally can be chosen arbitrarily close to zero) result in
larger sets Ui by definition, and therefore yield larger
values of λmin Σi( ). For example, h � 0.1 corresponds to
λmin(Σi) ≈ 0.01. Thus, the covariance matrices Σi also
satisfy the compatibility condition.

Remark 5. Throughout the proof, we will study events
of type {M /∈ #(supp(β),φ)} for appropriate β, φ, ran-
dom (sample-covariance) matrices M, and find upper
bounds for their probabilities. These events are clearly

measurable, because they can be written as intersec-
tions of countably many measurable sets. Specifically,
for any vector v ∈ Rd that satisfies ‖vIc‖1 ≤ 3‖vI‖1, the
function Gv that sends a random matrix M to |I|v�Mv/
φ2 − ‖vI‖21 is measurable; consequently G−1

v ([0,∞))
is also measurable. Because |I|v�Mv/φ2 − ‖vI‖21 and
‖vIc‖1 − 3‖vI‖1 are both continuous in v, and using the
fact that any vector v can be approximated with ar-
bitrary accuracy with a rational vector in Rd, the event
{M /∈#(supp(β),φ)} can be written as a countable in-
tersection of measurable sets of the form G−1

u ([0,∞))
for all rational u ∈ Rd satisfying ‖uIc‖1 ≤ 3‖uI‖1.
Finally, we give a few more examples of settings

that satisfy all four of our assumptions.

2.2.2. Discrete Covariates. In many applications, the
covariate vector may have discrete rather than con-
tinuous coordinates. It is easy to verify that our as-
sumptions are satisfied for any discrete distribu-
tion with finite support, as long as its support does
not lie in a hyperplane. For instance, we can take
the probability distribution 3X over covariate vec-
tors to be any discrete distribution over the verti-
ces of the d-dimensional unit cube {0, 1}d. Note that
Assumption 2 is still satisfied because all the vertices
lie on the decision boundary (where x�β1 � x�β2) or
are separated from this boundary by at least a con-
stant distance. In fact, any discrete distribution over a
finite number of points satisfies Assumption 2.

2.2.3. Generic Example. We now describe a generic
example that satisfies all the above assumptions. Con-
sider a bounded set - in Rd (Assumption 1). We call
some coordinates “continuous” (all possible reali-
zations x ∈ - take on continous values along these
coordinates) and some “discrete” (all possible reali-
zations x ∈ - take on a finite number of values along
these coordinates). Assume further that Assumption 2
holds (e.g., if 3X is the product measure for a distri-
bution of continuous and discrete coordinates, then
the distribution of continuous coordinates has a
bounded density and the probability of each value
for the discrete coordinates is positive). These con-
ditions are met by most distributions in practice.
Next, we impose that no arm lies on the edge of the
convex hull of allK arms (Assumption 3); that is, every
arm is either a vertex (optimal locally) or contained
inside the convex hull (suboptimal everywhere). (Note
that if the arm parameters are randomly selected
from a uniform distribution on {β ∈ Rd | ‖β‖∞ ≤ b}, this
condition would hold with probability one.) Finally,
we assume that with large enough probability, the co-
variates are linearly independent on each Ui so that
the covariance matrix Σi is positive-definite (Assump-
tion 4).
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3. LASSO Bandit Algorithm
We begin by providing some brief intuition about
the LASSO Bandit algorithm. Our policy produces
LASSO estimates β̂i for the parameter of each arm i ∈
[K] based on past samples Xt where arm iwas played.
A typical approach for addressing the exploration-
exploitation trade-off is to forced sample each arm at
prescribed times; this produces i.i.d. data for unbi-
ased estimation of the arm parameters, which can
then be used to play myopically at all other times
(i.e., choose the best arm based on current estimates).
However, such an algorithm will probably incur at
least Ω( ̅

T̅
√ ) regret, because we will require many

forced samples for the estimates to converge fast
enough.

Instead, our estimates may converge faster if we
use all past samples (including non-i.i.d. samples
from myopic play) from arm i to estimate βi. How-
ever, because these samples are not i.i.d., standard
convergence guarantees for LASSO estimators do not
apply, and we cannot ensure that the estimated
parameters β̂i converge to the true parameters βi.
We tackle this by adapting an idea from the low-
dimensional bandit algorithm by Goldenshluger and
Zeevi (2013), that is, maintaining two sets of esti-
mators for each arm: (1) forced sampling estimates
trained on only forced samples and (2) all-sample es-
timates trained on all past samples when arm i was
played. The former estimator is trained on i.i.d.
samples (and therefore has convergence guarantees)
while the latter estimator has the advantage of be-
ing trained on a much larger sample size (but naively,
has no convergence guarantees). The LASSO Bandit
uses the forced-sampling estimator in a preprocess-
ing step to select a subset of arms; it then uses the all-
sample estimator to choose the estimated best arm
from this subset. We prove that using the forced-
sampling estimator for the preprocessing step guar-
antees convergence of the all-sample estimator. A key
novel ingredient of our algorithm is specifying the
regularization paths to control the convergence of
our LASSO estimators by carefully trading off bias
and variance over time. Intuitively, we build low-
dimensional linear models in the data-poor regime
by limiting the number of allowed covariates; this
allows us to make reasonably good decisions even
with limited data. As we collect more data, we allow
for increasingly complex models (consisting of more
covariates), eventually recovering the standard OLS
model.

3.1. Additional Notation
Let the design matrix X be the T × dmatrix whose rows
are Xt. Similarly, let Yi be the length T vector of ob-
servations X�

t βi + εi,t. Because we only obtain feed-
back when arm i is played, entries of Yi may be

missing. We define the all-sample set 6i � {t | πt � i} ⊂
[T] for arm i as the set of times when arm iwas played.
For any subset 6′ ⊂ [T], let X(6′) be the |6′| × d sub-
matrix of X whose rows are Xt for each t ∈ 6′. Simi-
larly, when 6′ ⊂ 6i, let Yi(6′) be the length |6′| vector
of corresponding observed rewards Yi(t) for each
t ∈ 6′. Because πt � i for each t ∈ 6′, Yi(6′) has no
missing entries. Lastly, for any matrix Z ∈ Rn×d, let
Σ̂(Z) � Z�Z/n be its sample covariance matrix. For
any subset ! ⊂ [n], we use the short notation Σ̂(!)
to refer to Σ̂(Z(!)).

3.2. LASSO Estimation
Consider a linear model Y � Xβ + ε, with design ma-
trix X ∈ Rn×d, response vector Y ∈ Rn, and noise vector
ε ∈ Rn whose entries are independent σ-subgaussian
random variables. We define the LASSO estimator
for estimating the parameter β (with ‖β‖0 � s0):

Definition 3 (LASSO). Given a regularization parameter
λ ≥ 0, the LASSO estimator is

β̂X,Y(λ) ≡ argmin
β′

‖Y − Xβ′‖22
n

+ λ‖β′‖1
{ }

. (1)

The LASSO estimator satisfies the following tail
inequality.

Proposition 1 (LASSO Tail Inequality for Adapted Obser-
vations). Let Xt denote the tth row of X and Y(t) denote
the tth entry of Y. The sequence {Xt : t � 1, . . . ,n} forms
an adapted sequence of observations, that is, Xt may de-
pend on past regressors and their resulting observations
{Xt′ ,Y(t′)}t−1t′�1. Also, assume that all realizations of random
vectors Xt satisfy ‖Xt‖∞ ≤ xmax. Then for any φ > 0 and
χ > 0, if λ � λ(χ,φ) ≡ χφ2/(4s0), we have
Pr ‖β̂X,Y(λ) − β‖

1
> χ

[ ]
≤ 2 exp[−C1(φ)nχ2 + log d]
+ Pr Σ̂(X) /∈#(supp(β),φ)[ ]

,

where C1(φ) ≡ φ4/(512s20σ2x2max).
Remark 6. Note that the convergence rate χ and com-
patibility condition parameter φ determine the reg-
ularization parameter λ(χ,φ); this will be reflected in
the choice of regularization parameters in our algo-
rithm, and is further discussed in Remark 7. There-
fore, when we say “choosing regularization param-
eter λ,” it is implicitly assumed that the parameter χ
is selected appropriately.

Proposition 1 is a more general version of the stan-
dard LASSO oracle inequality (e.g., see theorem 6.1
in Bühlmann and Van De Geer (2011)). Our version
allows for adapted sequences of observations and
errors that are σ-subgaussian conditional on all past
observations. The result follows from modifying the
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proof of the standard LASSO oracle inequality2 using
martingale theory and is provided in Section EC.1 in
the online appendix.

3.2.1. LASSO for the Bandit Setting. Returning to our
original problem, we consider the task of estimat-
ing the parameter βi for each arm i ∈ [K]. Using any
subset of past samples6′ ⊂ 6iwhere arm iwas played
and any choice of parameter λ, we can use the cor-
responding LASSO estimator β̂X(6′),Y(6′),λ, which we
denote by the simpler notation β̂(6′, λ), to estimate βi.
In order to prove regret bounds, we need to establish
convergence guarantees for such estimates. From Prop-
osition 1, in order to bound the error ‖β̂(6′, λ) − βi‖1 for
each arm i ∈ [K], we need to (a) ensure with high prob-
ability Σ̂(6′) ∈ #(supp(βi),φ) for some constant φ and
(b) appropriately choose parameters λ over time to
control the rate of convergence. Thus, the main chal-
lenge in the algorithm and analysis is constructing and
maintaining sets 6′ such that with high probability
Σ̂(6′) ∈ #(supp(βi),φ) (although the rows of X(6′) are
not i.i.d.) with sufficiently fast convergence rates.

3.3. Description of Algorithm
The LASSO Bandit takes as input the forced sampling
parameter q ∈ Z+ (which is used to construct the forced
sample sets), a localization parameter h > 0 (defined in
Assumption 3),3 as well as initial regularization pa-
rametersλ1, λ2,0. These parameterswill be specified in
Theorem 1.

3.3.1. Forced Sample Sets. We prescribe a set of times
when we forced sample arm i (regardless of the ob-
served covariates Xt):

7i ≡
{
2n − 1( ) · Kq + j

⃒⃒⃒
n ∈ 0, 1, 2, . . .{ } and

j ∈ q(i − 1) + 1, q(i − 1) + 2, . . . , qi
{ }}

. (2)

Thus, the set of forced samples from arm i up to time t
is 7i,t ≡ 7i ∩ [t], with size 2(q log t).

3.3.2. All-Sample Sets. As before, let 6i,t � {
t′|πt′ � i

and 1 ≤ t′ ≤ t
}
denote the set of times we play arm i

up to time t. Note that by definition 7i,t ⊂ 6i,t.
At any time t, the LASSO Bandit maintains two sets

of parameter estimates for each βi:
1. the forced sample estimate β̂(7i,t−1, λ1) based

only on forced samples observed from arm i,
2. the all-sample estimate β̂(6i,t−1, λ2,t) based on all

samples observed from arm i.

3.3.3. Execution. If the current time t is in 7i for some
arm i, then arm i is played. Otherwise, two actions are
possible. First, we use the forced sample estimates to
find the highest estimated reward achievable across

all K arms. We then select the subset of arms _̂ ⊂ [K]
whose estimated rewards are within h/2 of the max-
imum achievable. After this preprocessing step, we
use the all-sample estimates to choose the arm with
the highest estimated reward within the set _̂.

Algorithm (LASSO Bandit)

Input parameters: q, h, λ1, λ2,0
Initialize 7i,0 and 6i,0 by the empty set, and

β̂(7i,0, λ1) and β̂(6i,0, λ2,0) by 0 in Rd for all i in [K]
Use q to construct force-sample sets 7i using Equa-
tion (2) for all i in [K]

for t ∈ [T] do
Observe user covariates Xt ∼ 3X
if t ∈ 7i for any i then

πt ← i (forced-sampling)
else

_̂ � {
i ∈ [K] |X�

t β̂(7i,t−1, λ1) ≥ maxj∈[K] ·
X�

t β̂(7j,t−1, λ1) − h/2
}
is the set of near-optimal

arms according to the forced sample
estimators

πt ← argmaxi∈_̂ X�
t β̂(6i,t−1, λ2,t−1) is the best

arm within _̂ according to the all-sample
estimators

end if
Update all-sample sets 6πt ,t ← 6πt,t−1 ∪ {t} and

regularization λ2,t ← λ2,0

̅̅̅̅̅̅̅̅̅̅̅
log t+log d

t

√
Play arm πt, observe Y(t) � X�

t βπt + εi,t
end for

Remark 7. The choices of regularization parameters λ1
and λ2,t are motivated by the following rough intuition.
In Proposition 1, the regularization parameter affects
two quantities: the size of the error χ, and the proba-
bility of error exp[−C1nχ2 + log d]. (Note that it does
not affect the term Pr Σ̂(X) /∈#(supp(β),φ)[ ]

.) For our
regret analysis of the forced sample estimator, it suf-
fices to keep the estimation error χ under h/(4xmax)with
as high a probability as possible; this can be achieved by
taking λ1 to be a constant. In contrast, for the all-sample
estimator we wish to maintain both small estimation
error χ, as well as a small probability of error; the above
recipe for λ2,t trades these two terms nearly equally by
guaranteeing the probability of error to be of order 1/ t̅

√
and estimation error χ to be of order

̅̅̅̅̅̅̅̅̅̅
log(t)/t√

.

3.4. Main Result: Regret Analysis of LASSO Bandit
Our main result establishes that the LASSO Bandit
asymptotically achieves expected cumulative regret
that scales logarithmically with the dimension of
covariates:

Theorem 1. When q ≥ 4�q0�, K ≥ 2, d > 2, t ≥ C5, and
we take λ1 � (φ2

0p∗h)/(64s0xmax) and λ2,0 � [φ2
0/(2s0)]

̅̅̅̅̅̅̅̅̅̅̅
1/(p∗C1)

√
, we have the following (nonasymptotic)
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upper bound on the expected cumulative regret of the LASSO
Bandit at time T by

RT ≤ C3 logT
( )2 + 2Kbxmax(6q + 4) + C3 log d

[ ]
logT

+ 2bxmaxC5 + 2Kbxmax + C4( )
� 2 s20 logT + log d

[ ]2( )
,

where the constants C1(φ0), C2(φ0), C3(φ0, p∗), C4(φ0, p∗),
and C5 are given by

C1(φ0) ≡
φ4
0

512s20σ2x2max
,

C2(φ0) ≡ min
1
2
,

φ2
0

256s0x2max

( )
,

C3(φ0, p∗) ≡
1024KC0x2max

p3∗C1
,

C4(φ0, p∗) ≡
8Kbxmax

1 − exp − p2∗C2
2

32

[ ] ,
C5 ≡ min t ∈ Z+|t ≥ 24Kq log t + 4(Kq)2{ }

,

and we take

q0 ≡ max
20
p∗

,
4

p∗C2
2
,
12 log d
p∗C2

2
,
1024x2max log d

h2p2∗C1

{ }
� 2 s20 log d

)
.

(
3.4.1. Lower Bound. Goldenshluger and Zeevi (2013)
prove an information-theoretic lower bound on the
expected cumulative regret of 2 logT

( )
for a (low-

dimensional) contextual bandit. Because our formu-
lation encompasses their setting, the same lower
bound also applies to our setting. In particular, they
consider (a) low-dimension s0 � d, and (b) two arms
K � 2, (c) both of which are assumed to be opti-
mal arms _opt � {1, 2}. Thus, our upper bound of
2
(
logT
[ ]

2
)
for the expected cumulative regret may be

up to a logT factor away from being optimal in T. It
remains an open question whether tighter conver-
gence guarantees can be developed for the LASSO
estimator so that our analysis of the LASSO Bandit
can be improved to meet the current lower bound.

In the interest of space, we do not provide a rig-
orous proof of the lower bound; however, we describe
a road map of the proof. First, a lower bound of
2 d logT
( )

in the low-dimensional setting follows by
extending the proof ofGoldenshluger and Zeevi (2013)
using the multidimensional (rather than the scalar) van
Trees inequality. In high-dimensional settings, this nat-
urally gives rise to a 2 s0 logT

( )
lower bound. To see

this, consider the case in which the support of the arm
parameters is known; then the decision maker can dis-
card irrelevant covariates, and the problem reduces

to the low-dimensional setting with a new covariate di-
mension of s0 (rather than d).

Remark 8. The localization parameter h (specified in
Assumption 3) can be thought of as a tolerance pa-
rameter. In practice, decision makers may choose h to
be a threshold value such that arms are considered
suboptimal if they are not optimal for some users by at
least h. For example, in healthcare, we may not wish to
prescribe a treatment that does not improve patient
outcomes above existing treatments by at least some
threshold value. However, if no such value is known,
one can consider supplying an initial value of h0 and
tuning this value down over time. In particular, our
algorithmprovides similar regret guarantees (with some
minor updates to the proof) if we choose h � h0/

̅̅̅̅̅̅
log t

√
for any initial choice h0 > 0. Thus, once t is large enough
such that h < h̄ (where h̄ is an unknown value that
satisfies Assumption 3), we recover the desired sta-
tistical properties of our algorithm even if the ini-
tial parameter h0 is incorrectly specified to be too
large; however, the regret during the initial time pe-
riods may suffer as a result. We exclude the proof for
brevity.

4. Key Steps of the Analysis of
LASSO Bandit

In this section, we outline the proof strategy for
Theorem 1. First, we need to obtain convergence guar-
antees for the forced sample and all-sample esti-
mators to compute the expected regret incurred,
while using such estimators. As discussed earlier, this
is challenging because the all-sample estimator is
trained on non-i.i.d. data, and, thus, standard LASSO
convergence results do not apply. We prove a new
general LASSO tail inequality that holds even when
the rows of the design matrix are not i.i.d. (Section 4.1).
We then use this result to obtain convergence guar-
antees for the forced sample (Section 4.2) and all-
sample estimators (Section 4.3) under a fixed regu-
larization path. Finally, we sum the expected regret
from the errors in the estimators (Section 4.4).

4.1. A LASSO Tail Inequality for Non-i.i.d. Data
We now prove a general result for the LASSO esti-
mator. In particular, consider a linear model

W � Zβ + ε,

where Zn×d is the design matrix, Wn×1 is the response
vector and εn×1 is the vector of errors whose entries
are independent σ-subgaussians. The rows Zt of Z are
random vectors such that all their realizations are
bounded, that is, ‖Zt‖∞ ≤ xmax for all t ∈ [n]. We also
assume ‖β‖0 � s0. Following the notation introduced
earlier in Section 3.1, for any subset ! ⊂ [n] we de-
fine the analogous quantities Z(!), W(!), and Σ̂(!).
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Then, for any λ ≥ 0 we have a LASSO estimator
trained on samples in !:

β̂(!, λ) ≡ argmin
β′

‖W(!) − Z(!)β′‖22
|!| + λ‖β′‖1

{ }
.

Note that we have not made any distributional (or
i.i.d.) assumptions on the samples in !. We now
consider that some unknown subset !′ ⊂ ! com-
prising i.i.d. samples from a distribution 3Z, that is,
{Zt | t ∈ !′} ∼ 3Z × · · · ×3Z. Letting Σ ≡ EZ∼3Z ZZ�[ ],
we further assume that Σ ∈ #(supp(β),φ1) for a con-
stant φ1 ∈ R+. We will show that if the number |!′| of
i.i.d. samples is sufficiently large, then we can prove
a convergence guarantee for the LASSO estimator
β̂(!, λ) trained on samples in !, which includes non-
i.i.d. samples. (Note that!′ is unknown; if not, we can
simply use the estimator β̂(!′, λ) trained only on the
i.i.d. samples in !′.) In particular, suppose that at
least some constant fraction of the samples in ! be-
long in !′, that is, |!′|/|!| ≥ p/2 for a positive con-
stant p. We then have the following result.

Lemma 1. For any χ > 0, if d > 1, |!′|/|!| ≥ p/2, |!| ≥
6 log d/(p C2(φ1)2), and λ � λ(χ, φ1

̅̅
p

√
/2) � χ φ1

2 p/
(16s0), then the following tail inequality holds:

Pr ‖β̂(!, λ) − β‖1 > χ
[ ]
≤ 2 exp −C1

φ1
̅̅
p

√
2

( )
|!|χ2 + log d

[ ]
+ exp −pC2(φ1)2 |!|/2[ ]

.

Recall that the constants C1 and C2 are defined in
Section 3.3. The full proof is given in Section EC.2 in
the online appendix, but we describe the main steps
here. We first show that Σ̂(!′) ∈ #(supp(β),φ1/

̅̅
2

√ )
with high probability. This involves showing that
‖Σ̂(!′) − Σ‖∞ is small with high probability using
random matrix theory. Next, we use this fact along
with the Azuma-Hoeffding inequality to show that
Σ̂(!) ∈ #(supp(β),φ1

̅̅
p

√
/2) with high probability. Ap-

plying Proposition 1 to β̂(!, λ) will give the desired
tail inequality even though part of the data are not
generated i.i.d. from 3Z.

4.2. LASSO Tail Inequality for the Forced
Sample Estimator

We now obtain a tail inequality for the forced sample
estimator β̂(7i,t, λ1) of each arm i ∈ [K].
Proposition 2. For all i ∈ [K], the forced sample estimator
β̂(7i,t, λ1) satisfies

Pr ‖β̂ 7i,t, λ1( ) − βi‖1 >
h

4xmax

[ ]
≤ 5
t4
,

when λ1 � φ2
0p∗h/(64s0xmax), t ≥ (Kq)2, q ≥ 4�q0�, and q0

satisfies the definition in Section 3.3.

Note that the matrix Σ̂(7i,t) concentrates around
EX∼3X [XX�]. Thus, although this estimator is trained
on i.i.d. samples from 3X, the above tail inequality
does not directly follow from Proposition 1, because
we have only assumed that the compatibility condi-
tion holds for Σi � EX∼3X [XX�|X ∈ Ui] rather than
EX∼3X [XX�] (Assumption 4). This is easily resolved
by showing 7′

i,t ≡ {t′ ∈ 7i,t | Xt′ ∈ Ui} is a set of i.i.d.
samples from 3X|X∈Ui and then applying Lemma 1
with ! � 7i,t, !′ � 7′

i,t, and 3Z � 3X|X∈Ui . The full
proof is given in Section EC.3 of the online appendix.

4.3. LASSO Tail Inequality for the All-
Sample Estimator

We now provide a tail inequality for the all-sample
estimator of optimal arms _opt. The challenge is that
the all-sample sets6i,t depend on choices made online
by the algorithm. More precisely, the algorithm se-
lects arm i at time t based both on Xt and on previous
observations {Xt′ }1≤t′<t (which are used to estimate βi).
As a consequence, the variables {Xt | t ∈ 6i,t} may be
correlated.
Moreover, unlike the forced sample estimator, we

do not have a guarantee that a constant fraction of the
all-sample sets 6i,t are i.i.d. In particular, only the
|7i,t| � 2(logT) forced samples are guaranteed to be
i.i.d., but we will prove that |6i,t| � 2(T) for optimal
arms i ∈ _opt with high probability. Thus, we cannot
directly apply Lemma 1 with ! � 6i,t and !′ � 7′

i,t as
before. We resolve this by showing that (a) our al-
gorithm uses the forced sample estimator 2(T) times
with high probability and (b) a constant fraction of the
sampleswhereweuse the forced sample estimator are
i.i.d. from the regions Ui. We then invoke Lemma 1
with amodified!′ such that |!′| � 2(T). In particular,
we define the event

At ≡ ‖β̂(7i,t, λ1) − βi‖1 ≤
h

4xmax
, ∀i ∈ [K]

{ }
. (3)

Because the event At only depends on forced sam-
ples, the random variables {Xt | At−1 holds} are i.i.d.
(with distribution 3X). Furthermore, if we let

6′
i,t ≡ t′ ∈ [t] | At′−1 holds,Xt′ ∈ Ui, and{

t′ /∈ ∪j∈[K] 7j,t
}
.

then the random variables {Xt′ | t′ ∈ 6′
i,t} are i.i.d.

(with distribution 3X|X∈Ui ). Finally, we will show that
for i ∈ _opt, the event At′−1 ensures that LASSO Bandit
chooses arm i at time t′ when Xt′ ∈ Ui, so 6′

i,t ⊂ 6i,t.
Finally, we will use Proposition 2 to show that events
At′−1 occur frequently enough so that |6′

i,t| is suffi-
ciently large. Then, we can use Lemma 1 with! � 6i,t
and !′ � 6′

i,t to prove Proposition 3. (Note that we
will not need to prove convergence of the all-sample
estimator for suboptimal arms _sub.)
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Proposition 3. The all-sample estimator β̂(6i,t, λ2,t) for i ∈
_opt satisfies the tail inequality

Pr ‖β̂ 6i,t, λ2,t( ) − βi‖1 > 16

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log t + log d
p3∗C1(φ0)t

√[ ]

<
2
t
+ 2 exp − p2∗C2(φ0)2

32
· t

[ ]
, (4)

when λ2,t � [φ2
0/(2s0)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(log t + log d)/(p∗C1(φ0)t)
√

and
t ≥ C5.

In particular, Proposition 3 guarantees ‖β̂(6i,t, λ2,t) −
βi‖1 � 2( ̅̅̅̅̅̅̅̅̅

log t/t
√ ) with high probability while Propo-

sition 2 only guarantees ‖β̂ 7i,t, λ1( ) − βi‖1 � 2(1) with
high probability. However, note that the all-sample
estimator tail inequality only holds for optimal arms
_opt,while the forced sample estimator tail inequality
holds for all arms [K]. Thus, the LASSO Bandit uses
the all-sample estimator to choose the best estimated
arm because of its significantly faster convergence.
However, the algorithm requires a preprocessing step
using the forced sample estimator to (a) ensure that
we obtain2(T) i.i.d. samples for each i ∈ _opt (required
for the proof of Proposition 3) and (b) to prune out
suboptimal arms _sub with high probability (as we will
show in the next subsection) for which Proposition 3
does not hold. The full proof is given in Section EC.4
of the online appendix.

4.4. Bounding the Cumulative Expected Regret
We now use our convergence results to compute the
cumulative regret of LASSO Bandit. We divide our
time periods [T] into three groups:
(a) Initialization (t ≤ C5), or forced sampling (t ∈ 7i,T

for some i ∈ [K]).
(b) Times t > C5 when the event At−1 does not hold.
(c) Times t > C5 when the event At−1 holds, and we

do not perform forced sampling; that is, the LASSO
Bandit plays the estimated best arm from _̂ (chosen by
the forced-sampling estimator) using the all-sample
estimator.

Note that these groupsmay not be disjoint, but their
union contains [T]. We bound the regret from each
period separately and sum the results to obtain an
upper bound on the cumulative regret. Our division
of groups (b) and (c) ismotivated by the fact thatwhen
At−1 holds, the forced sample estimator (i) includes
the correct arm as part of the chosen subset of arms _̂
and (ii) does not include any suboptimal arms from
_sub in _̂. Thus, when At−1 holds, we can apply the
convergence properties of the all-sample estimator
(which only hold for optimal arms) to _̂ without the
concerns that _̂may not include the true optimal arm
or that it may include suboptimal arms.

The cumulative expected regret from time pe-
riods in group (a) at time T is bounded by at most

2bxmax(6qK logT + C5) (Lemma EC.15). This follows
from the fact that the worst-case regret at any time
step is at most 2bxmax (Assumption 1), while there are
only C5 initialization samples and at most 6Kq logT
forced samples up to time T (Lemma EC.8).
Next, the cumulative expected regret from time

periods in group (b) at time T is bounded by at most
2Kbxmax (Lemma EC.17). This follows from the tail in-
equality for the forced sample estimator (Proposition 2),
which bounds the probability that event At does not
hold at time t by atmost 5K/t4. The result follows from
summing this quantity over time periods C5 < t ≤ T.
Finally, the cumulative expected regret from time

periods (c) at time T is bounded by at most (8Kbxmax +
C3 log d) logT + C3 logT

( )
2 + C4 (Lemma EC.20). To

show this, we first observe that if event At holds, then
the set _̂ (chosen by the forced sample estimator) con-
tains the optimal arm i∗ � argmaxi∈[K] X�

t βi and no
suboptimal arms from the set _sub (Lemma EC.18).
Then, we sum the expected regret using Proposition 3
for all optimal arms. Our all-sample estimators for
each optimal arm satisfy ‖β̂ 6i,t, λ2,t( ) − βi‖1 � 2( ̅̅̅̅̅̅̅̅̅

log t/t
√ )

with high probability; thus, as shown in Lemma
EC.19, we only incur regret if the observed covariate
vectors are within a 2( ̅̅̅̅̅̅̅̅̅

log t/t
√ ) distance from a de-

cision boundary (which occurs with small probabil-
ity based on Assumption 2). Finally, if the error of some
optimal arm’s parameter estimate ‖β̂ 6i,t, λ2,t( ) − βi‖1
is much larger than 2( ̅̅̅̅̅̅̅̅̅

log t/t
√ ), we incur worst-case

regret, but this occurs with exponentially small
probability.

4.5. Proof of the Main Result
Summing up the regret contributions from the pre-
vious subsection gives us our main result.

Proof of Theorem 1. The total expected cumulative re-
gret of the LASSO Bandit up to time T is upper bounded
by summing all the terms from Lemmas EC.15, EC.17,
and EC.20:

RT ≤ 2bxmax(6qK logT + C5)
⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞Regret from(a)

+ 2Kbxmax

⏞̅̅ ⏟⏟̅̅ ⏞Regret from(b)

+ 8Kbxmax + C3 log d
( )

logT + C3 logT
( )2 + C4

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞Regret from(c)

� C3 logT
( )2 + 2Kbxmax(6q + 4) + C3 log d

[ ]
logT

+ 2bxmaxC5 + 2Kbxmax + C4( )
� logT C3 logT + 2Kbxmax(6q + 4) + C3 log d

[ ]
+ 2bxmaxC5 + 2Kbxmax + C4( ).

Now, using q � 2 s20 log d
( )

, and the fact that C0, . . . ,C5,
b, xmax, and φ0 are constants,

RT �2 logT logT + s20 logd
[ ]( )� 2 s20 logT + logd

[ ]2( )
. □
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5. Empirical Results
The objective of this section is to compare the per-
formance of LASSO Bandit with existing algorithms
that have theoretical guarantees in our setting. We
present two sets of empirical results evaluating our
algorithm on both sparse synthetic data (Section 5.1)
and a simplified version of the warfarin dosing problem
using a real patient data set (Section 5.2).

5.1. Synthetic Data
We evaluate the LASSO Bandit on a synthetically gen-
erated data set to address two questions: (1) howdoes the
LASSO Bandit’s performance compare against existing
algorithms empirically, and (2) is the LASSO Bandit ro-
bust to the choice of input parameters?

We compare the LASSOBandit against (a) the UCB-
basedalgorithmOFUL-LS (Abbasi-Yadkori et al. 2011),
which is an improved version of the algorithm sug-
gested in Dani et al. (2008), (b) a sparse variant OFUL-
EG for high-dimensional settings (Abbasi-Yadkori
2012, Abbasi-Yadkori et al. 2012), and (c) the OLS
Bandit by Goldenshluger and Zeevi (2013). Our re-
sults demonstrate that the LASSOBandit significantly
outperforms these benchmarks. Separately, we find
that the LASSO Bandit is robust to changes in input
parameters by even an order of magnitude.

Remark 9. We only consider algorithms that have the-
oretical guarantees for our problem. In particular, recall
that linear bandit algorithms can be only translated to
the contextual bandit if they consider a changing action
space (see Abbasi-Yadkori (2012) for details on the
connection between variations of the linear bandit and
contextual bandit). Two notable linear bandit algorithms
that do notmeet these criteria are Carpentier andMunos
(2012) and Agrawal and Goyal (2013). We also do not
include the Thompson sampling algorithm of Russo and
Van Roy (2014a), because they use a different perfor-
mance metric of Bayes risk, which is the expected value
of the standard notion of regret (that we use) with re-
spect to a Bayesian prior over the unknown arm pa-
rameters. In practice, the decision maker may not have
access to the true prior.

5.1.1. Synthetic Data Generation. We consider three
scenarios for K, d, and s0: a) K � 2, d � 100, s0 � 5;
(b) K � 10, d � 1000, s0 � 2; and (c) K � 50, d � 20,
s0 � 2. In each case, we consider K arms (treatments)
and d user covariates, where only a randomly chosen
subset of s0 covariates are predictive of the reward for
each treatment; that is, for each i ∈ [K], the arm pa-
rameters βi are set tozero, except for s0 randomly selected
components that are drawn from a uniform distribution
on [0, 1]. We note that the OFUL-EG algorithm requires
an additional technical assumption that

∑K
i�1 ‖βi‖1 � 1. We

scale our βi’s accordingly so that this assumption is met.

Next, at each time t, user covariates Xt are in-
dependently sampled from a Gaussian distribution
1(0d, Id) and truncated so that ‖Xt‖∞ � 1. Finally, we
set the noise variance to be σ2 � 0.052.

5.1.2. Algorithm Inputs. Bandit algorithms require the
decision maker to specify a variety of input param-
eters that are often unknown in practice. For instance,
Theorem 1 suggests specific input parameters for the
LASSO Bandit (e.g., σ,φ0) and similarly, the bench-
mark OFUL and OLS Bandit algorithms require anal-
ogous specifications. Therefore, in order to simulate
a realistic environment where no past (properly ran-
domized) data are available to tune these parameters,
wemake ad hoc choices for the input parameters of the
LASSO and OLS Bandit algorithms, and use param-
eters suggested in computational experiments by the
authors of the OFUL-LS and OFUL-EG algorithms
(Abbasi-Yadkori 2012). Note that these parameters
cannot be estimated from historical data, because we
suffer from bandit feedback and estimating some
parameters requires knowledge of every arm’s re-
wardat a given time step.As a robustness check,we later
vary the input parameters of the LASSO Bandit to better
understand the sensitivity of its performance to these
heuristic choices.
For the LASSO and OLS Bandit algorithms, we

choose the forced-sampling parameter q � 1 and the
localization parameter h � 5. For the LASSO Bandit,
we further set the initial regularization parameters to
c � λ1 � λ2,0 � 0.05. For the OFUL algorithms, as sug-
gested by Abbasi-Yadkori (2012), we set λ � 1 and
δ � 10−4, and furthermore, we set η � 1 for OFUL-EG.

5.1.3. Results. Figure 1 compares the cumulative re-
gret (averaged over 5 trials) of the LASSO Bandit
against other bandit algorithms on the aforemen-
tioned synthetic data forT � 10, 000 steps. The shaded
region around each curve is the 95% confidence in-
terval across the 5 trials.We see that the LASSOBandit
significantly outperforms benchmarks in cumulative
regret.
Figure 1(a) shows that the LASSO Bandit continues

to achieve significantly less per-time-step regret than
the alternative algorithms even for large t. For ex-
ample, when t ≈ 1, 000, we have that d � t and thus
we are in a low-dimensional regime. However, the
slope of the cumulative regret curve of the LASSO
Bandit is visibly smaller than that of the alternative
algorithms at t ≈ 1, 000. This shows that the LASSO
Bandit may be useful even in low-dimensional re-
gimes, because other algorithms continue to overfit
the arm parameters.
Figure 1(b) considers a larger number of covariates d.

As expected, we see that the performance gap be-
tween the LASSO Bandit and the other algorithms
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increases significantly; this is because the benchmark
algorithms do not take advantage of sparsity andperform
exploration for at least 2(Kd) samples in order to define
linear regression estimates for each arm. Figure 1(c)
considers a larger number of arms and fewer covariates.
Here, we see that the performance gap between the
LASSO Bandit and alternative methods decreases; this
is because the LASSO Bandit does not provide any im-
provement over existing algorithms in K, and provides
limited improvement when the number of covariates
is very small.

5.1.4. Additional Simulations. To study the robustness
of the above simulations, we provide a comprehen-
sive set of simulations in Section EC.6 in the online
appendix to test the performance of the LASSOBandit
as the parameters or modeling assumptions (required
for the theory) are varied. First, we study how the
regret of the LASSO Bandit scales with respect to each
of the parameters K, d, and s0 separately (see Section
EC.6.1); we find that the regret appears to grow log-
arithmically with d, and linearly with K and s0. Next,
we perform sensitivity analysis to the input parameters
h, q, and c (see Section EC.6.2). We find that the cu-
mulative regret performance is not substantially af-
fected despite experimenting with the parameters by
up to an order of magnitude; this suggests that the
LASSO Bandit is robust, which is important, because
input parameters are likely to be misspecified in practice.

Another interesting direction is considering non-
linear reward functions. The LASSO Bandit can be
used in conjunction with basis expansion methods
from statistical learning to approximate any nonlinear
function (Hastie et al. 2001). In Section EC.6.3, we
numerically demonstrate that such a version of our
method can perform very well with nonlinear rewards.

Finally, in Section EC.6.4, we consider settings in
which the covariate distribution 3X does not satisfy
the margin condition (Assumption 2) or the arm opti-
mality condition (Assumption 3).

5.2. Case Study: Warfarin Dosing
5.2.1. Preliminaries. A finite-armed adaptive clinical
trial with patient covariates is an ideal application for
our problem formulation and algorithm. For instance,
in the aforementioned BATTLE clinical trial (Kim et al.
2011), the arms would be the four chemotherapeutic
agents, the patient covariates would be the biomarkers
from the patient’s tumor biopsy, and the reward would
be the patient’s expected length of cancer remission.
Our algorithm (and other algorithms for the con-
textual bandit) would seek to learn a mapping be-
tween patient biomarkers and the optimal chemo-
therapeutic assignment to maximize overall patient
remission rates. (Even in such a setting, we havemade
a number of simplifications, e.g., the ability to observe
instantaneous rather than delayed feedback. Mod-
eling the full complexity of the problem is beyond the
scope of our paper.)
Therefore,wewould ideally evaluate our algorithm

on a real patient data set from such an application.
However, performing such an evaluation retrospec-
tively on observational data is challenging because
we require access to counterfactuals. In particular,
our algorithm may choose a different action than the
one taken in the data; thus, we need an unbiased
estimate of the resulting reward to evaluate the al-
gorithm’s performance. Estimating such counterfac-
tuals is known to be very difficult in healthcare, be-
cause many unobserved confounders can significantly
bias our results.
As a consequence, we choose a unique application

(warfarin dosing), where we do have access to coun-
terfactuals. However, in order to simulate bandit feed-
back, we will suppress this counterfactual informa-
tion to the bandit algorithms, thereby handicapping
ourselves relative to an optimal algorithm. This lets us
benchmark the performance of our algorithm against
existing bandit methods in an unbiased manner on a
real patient data set (where our technical assumptions
may not hold).

Figure 1. Comparison of the Cumulative Regret of the LASSO Bandit Against Other Bandit Algorithms on Synthetic Data for
Different Values of K, d, and s0
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Warfarin is the most widely used oral anticoagu-
lant agent in the world (Wysowski et al. 2007). Cor-
rectly dosing warfarin remains a significant challenge
to practitioners, because the appropriate dosage is
highly variable (by a factor of up to 10) depending on
clinical, demographic, and genetic factors.

Physicians currently follow a fixed-dose strategy:
they start patients on 5mg/day (the appropriate dose
for the majority of patients) and slowly adjust the
dose over the course of a few weeks by tracking the
patient’s anticoagulation levels. However, an incorrect
initial dosage can result in highly adverse consequences,
such as stroke (if the initial dose is too low) or internal
bleeding (if the initial dose is toohigh). Everyyear, nearly
43,000 emergency department visits in the United States
are due to adverse events associated with inappropriate
warfarindosing (Budnitz et al. 2006). Thus,we tackle the
problem of learning and assigning an appropriate initial
dosage to patients by leveraging patient-specific factors.

5.2.2. Data Set. We use a publicly available patient
data set that was collected by staff at the Pharma-
cogenetics and Pharmacogenomics Knowledge Base
(PharmGKB) for 5,700 patients whowere treatedwith
warfarin from 21 research groups spanning 9 coun-
tries and 4 continents. Importantly, these data contain
the true patient-specific optimal warfarin doses (which
are initially unknown but are eventually found through
the physician-guided dose adjustment process over the
course of a few weeks) for 5,528 patients. It also includes
patient-level covariates, such as clinical factors, demo-
graphic variables, and genetic information, that have been
found to be predictive of the optimal warfarin dosage
(InternationalWarfarin Pharmacogenetics Consortium
et al. 2009). These covariates include the following:

• Demographics: gender, race, ethnicity, age, height,
weight

• Diagnosis: reason for treatment (e.g., deep vein
thrombosis, pulmonary embolism)

• Preexisting diagnoses: indicators for diabetes,
congestive heart failure or cardiomyopathy, valve
replacement, smoker status

• Medications: indicators for potentially interacting
drugs (e.g., aspirin, Tylenol, Zocor)

• Genetics: presence of genotype variants of
CYP2C9 and VKORC1

Details on the data set can be found in supplementary
appendix 1 of International Warfarin Pharmacogenetics
Consortium et al. (2009). These covariates were hand-
selected by professionals as being relevant to the task
of warfarin dosing based on medical literature; there
are no extraneously added variables.

Finally, we note that the authors of International
Warfarin Pharmacogenetics Consortium et al. (2009)

report that an ordinary least squares linear model fits
the data best (i.e., achieves the best cross-validation
accuracy) compared with alternative models (such
as support vector regression, regression trees, model
trees, multivariate adaptive regression splines, least-
angle regression, LASSO) for the objective of predi-
cting the correct warfarin dosage as a function of
the given patient-level variables. The results of Inter-
nationalWarfarin Pharmacogenetics Consortium et al.
(2009) suggest no underlying sparsity in these data.
Thus, one might expect low-dimensional algorithms
like the OLS Bandit or OFUL-LS to perform no worse
than the LASSO Bandit; surprisingly, we find that this
is not the case in the online setting.

5.2.3. Bandit Formulation. We formulate the problem
as a 3-armed bandit with covariates.

Arms: We bucket the optimal dosages using the “clini-
cally relevant” dosage differences suggested in In-
ternational Warfarin Pharmacogenetics Consortium
et al. (2009): (1) low: under 3 mg/day (33% of cases),
(2) medium: 3–7 mg/day (54% of cases), and (3) high:
over 7 mg/day (13% of cases). In particular, patients
who require a low (high) dose would be at risk for
excessive (inadequate) anticoagulation under the phy-
sician’s medium starting dose. We estimate the true
arm parameters βi using linear regressions on the en-
tire data set.

Covariates: We construct 93 patient-specific cova-
riates, including indicators for missing values.

Reward: For each patient, we set the reward to 0 if the
dosing algorithm chooses the arm corresponding to
the patient’s true optimal dose.Otherwise, the reward
is set to −1. We choose this simple reward function so
that the regret directly measures the number of in-
correct dosing decisions. Other objectives (e.g., the
cost of treating adverse outcomes for under- vs. over-
dosing) can be easily considered by adjusting the def-
inition of the reward function accordingly.
As an aside, note that we have chosen a binary

reward for simplicity although we are modeling the
reward as a linear function. Yet the LASSO Bandit
performs well in this setting, suggesting that it also
can be valuable for discrete outcomes.

5.2.5. Evaluation and Results. We consider 10 random
permutations4 of patients and simulate the following
policies:

1. LASSOBandit, described inSection 3 of thispaper,
2. OLS Bandit, described in Goldenshluger and

Zeevi (2013),
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3. OFUL-LS, described in Abbasi-Yadkori et al.
(2011),

4. OFUL-EG, described in Abbasi-Yadkori et al.
(2012),5

5. Doctors, who currently always assign an initial
medium dose (International Warfarin Pharmacogenetics
Consortium et al. 2009), and

6. Oracle, which assigns the optimal estimated
dose given the true arm parameters βi.

Note that a true oracle policy cannot be imple-
mented, because arm parameters βi are not available.
Instead, we consider an “approximate” version of the
oracle that estimates the arm parameters βi upfront
using all the patient outcomes (that have not yet been
observed by the other algorithms). This oracle may
still make incorrect decisions, because it only has
access to estimated arm parameters. We consider two
versions of the oracle policy: Linear Oracle that es-
timates βi via linear regression, and Logit Oracle that
estimates βi via logistic regression (because the out-
comes are binary).

We sequentially draw random permutations of
patients and simulate the actions and feedback of
each of the six policies. Note that the data contains
each patient’s true optimal dosage, but we suppress
this information from the learning algorithms; we use
the true dosage as counterfactuals to evaluate the
reward of each algorithm after it chooses an action.
Figure 2 compares the average fraction of incorrect
dosing decisions under each policy as a function of the
number of patients seen in the data; the shaded error
bars represent statistical fluctuations of the rewards
over the 10 permutations.

We first note that the LASSO Bandit outperforms
the three other bandit algorithms for any number of
patients across all permutations. The results show
three regimes:

Small Data: When there are very few samples (< 200
patients), the doctor’s policy of assigning themedium
dose (which is optimal for the majority of patients)
performs best on average.

Moderate Data: When there are a moderate number
of samples (200–1,500 patients), the LASSO Bandit ef-
fectively learns the arm parameters and outperforms
the doctor’s policy; however, the remaining bandit al-
gorithms still perform worse than physicians.

Big Data: For a large number of samples (1,500–
5,000 patients), both the LASSO and OLS bandit pol-
icies outperform the physician’s policy and begin to
look comparable. However, the OFUL-LS and OFUL-
EG algorithms still perform worse than do doctors.

Note that all three existing bandit algorithms required
more than 1,500 patient samples before outperforming

the doctor’s static policy; this may be prohibitively
costly in a healthcare setting and may hinder adop-
tion of learning strategies in practice. In contrast, we
see that the LASSO Bandit starts outperforming the
doctor’s policy after only 200 patients, resulting in a
significant improvement of outcomes for initial pa-
tients. Thus, although an OLS linear model fits the
entire data set better than a LASSO model, it may be
more effective to use the LASSO Bandit in an online
setting in order tomore efficiently use information as
it is collected. In particular, the LASSO Bandit uses
regularization to first build simple predictive models
(with few covariates), and gradually builds more
complex predictive models (by including more cova-
riates over time); this helps us make reasonable de-
cisions in the small-data regime without sacrificing
performance in the big-data regime.

5.2.6. Risk Implications. One concern that arose in
conversations with clinicians is that although the
LASSO Bandit policy achieves a higher dosing accu-
racy overall (compared with doctors), it may assign a
“significantly worse” dose to some patients. In par-
ticular, the bandit algorithmmay assign a low dose to
a patientwhose true dose is high (or vice versa); on the
other hand, the doctor always hedges her bet by
assigning the medium dose.
To better illustrate the risk consequences, we tab-

ulate the assigned versus true dosages for the LASSO
Bandit and doctor’s policies after 5,000 patients (see
Table 1). The red numbers indicate the fraction of
patients assigned a significantly worse dose and
the blue numbers indicate the fraction of patients
assigned the correct dose. We find that there is only a
0.7% weighted probability that a patient receives a
significantly worse dose under the LASSO Bandit
policy. On the other hand, the LASSOBandit correctly
doses 57% of the patients for whom low dosage is
optimal; in contrast, the physician policy does not
dose any of these patients correctly (thereby sub-
jecting them to excessive anticoagulation) although
they account for a third of the patient population. This
trade-off can be explored further by adjusting the
reward function; in particular, we have used a binary
loss formisdosing, but the loss can be a function of the
magnitude of misdosing.

Remark 10. Several simplifying assumptions were
made in this case study. For example, warfarin dosing is
not a truly bandit problem, because we always observe
the optimal arm (patient’s true dose) even if we play the
wrong arm (assign the wrong dose initially) as the doctor
tunes the dosage over time. Yet we use this setting as a
case study to evaluate bandit policies because the data
contains the true counterfactual outcomes without
performing an experiment. For problems with true
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bandit feedback, we do not observe counterfactual
rewards for actions that were not chosen in the data,
so we cannot evaluate the counterfactual perfor-
mance of the LASSO Bandit. In practice, the LASSO
Bandit would be most useful for bandit settings where
the patient can only receive one treatment and the
counterfactual outcomes under other treatments can-
not be observed, for example, the problem of choos-
ing chemotherapy agents as described in the intro-
duction (Kim et al. 2011).

6. Conclusions
We present the LASSO Bandit algorithm for contex-
tual bandit problemswith high-dimensional covariates,

and we prove the first regret bound that grows only
polylogarithmically in both the number of covariates
and the number of patients. We empirically find
that the LASSO Bandit is more versatile than exist-
ing methods: although it is designed for high-
dimensional sparse settings, it outperforms the OLS
Bandit even in low-dimensional and nonsparse prob-
lems. We illustrate the LASSO Bandit’s practical
relevance by evaluating it on a medical decision-
making problem of warfarin dosing; we find that it
surpasses existing bandit methods as well as physi-
cians to correctly dose a majority of patients and
thereby improve overall patient outcomes. We note
that several simplifying assumptions were made in

Figure 2. Comparison of the Fraction of Incorrectly Dosed Patients Under the Oracle, LASSO Bandit, OLS Bandit, OFUL-LS,
OFUL-EG, and Doctor Policies as a Function of the Number of Patients in the Warfarin Data

Table 1. Fraction of Patients (Stratified by Their True Dose) Who Were Assigned Each
Dose (Low/Medium/High) Under the LASSO Bandit and Physician Policies

True dosage

LASSO bandit policy
assigned dosage (%)

Physician policy assigned
dosage (%)

% of patientsLow Medium High Low Medium High

Low 57 42 1 0 100 0 33
Medium 14 83 3 0 100 0 54
High 3 90 7 0 100 0 13

Note. Blue numbers represent the fraction of patients who were dosed correctly; red numbers represent
the fraction of patients who were dosed incorrectly by two buckets.
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this evaluation, and thus, modeling the full com-
plexity of the problem would be a valuable direction
to pursue in future work.

6.1. Limitations and Future Directions
We conclude by discussing a number of limitations of
the LASSO Bandit algorithm. First, it is not suitable
in applications with a large number of arms, because
our regret bounds scale superlinearly with K. This is
because our model treats each arm as an independent
decision, and so the outcome of each arm provides no
information on other arms. However, in certain ap-
plications (e.g., combination chemotherapy, where
each arm is a combination of several base drugs, or
assortment optimization, where each assortment is a
combination of several products), one can improve
performance by taking advantage of the correlation
between arms. Second, our algorithm relies on a
prescribed schedule for exploration. Such pure ex-
ploration phases may be prohibitively costly or un-
ethical in settings such as medical decision making.
In such situations, methods such as UCB that only
explore within a certain confidence set may be more
desirable. One could even consider algorithms that
avoid exploration. Finally, our algorithm, similar to
UCB or OLS Bandit, requires a number of input pa-
rameters which should ideally be optimized for the
desired application. An interesting research question
would be how to optimize these parameters in a data-
driven fashion.
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Endnotes
1Throughout the paper, the “covariance matrix” of X refers to the
matrix E[XX�], even when E[X] �� 0.
2 “Oracle inequality” refers to the fact that the LASSO achieves the
same accuracy ‖β̂X,Y(λ) − β‖1 (up to logarithmic factors) compared
with an oracle that knows supp(β) in advance [see chapter 6 of
Bühlmann and Van De Geer (2011)].
3Note that if some h̄ satisfies Assumption 3, then any h ∈ (0, h̄] also
satisfies the assumption. Therefore, a conservatively small value can
be chosen in practice, but this will be reflected in the constant in the
regret bound.
4We also repeated the analysis using bootstrap samples (random
subsets with replacement) and the results were similar. We present
the results for permuted samples, because the confidence intervals
produced by the bootstrapped samples may be optimistic (because
they may overfit to samples drawn multiple times from the original
data with replacement). In the offline setting, Efron and Tibshirani
(1993) provide methods for correcting such bias; such methods may
extend to our online setting, but determining this is beyond the scope
of this paper.
5The original OFUL-EG requires the assumption that

∑k
i�1 ‖βi‖1 � 1

(Abbasi-Yadkori 2012); however, there is no way to guarantee that

this holds on a real data set, where we do not know the {βi}. Thus, we
modify the confidence sets using the EG(±) algorithm (Kivinen and
Warmuth 1997), which does not require this assumption.
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