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Summary. Two-sample multiple testing has a wide range of applications. The conventional
practice first reduces the original observations to a vector of p-values and then chooses a
cutoff to adjust for multiplicity. However, this data reduction step could cause significant loss
of information and thus lead to suboptimal testing procedures. In this paper, we introduce a
new framework for two-sample multiple testing by incorporating a carefully constructed aux-
iliary variable in inference to improve the power. A data-driven multiple testing procedure is
developed by employing a covariate-assisted ranking and screening (CARS) approach that
optimally combines the information from both the primary and auxiliary variables.
The proposed CARS procedure is shown to be asymptotic valid and optimal for false discovery
rate (FDR) control. The procedure is implemented in the R-package CARS. Numerical results
confirm the effectiveness of CARS in FDR control and show that it achieves substantial power
gain over existing methods. CARS is also illustrated through an application to the analysis of
satellite imaging data set for supernova detection.
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1. Introduction

A common goal in modern scientific studies is to identify features that exhibit differential
levels across two or more conditions. The task becomes difficult in large-scale comparative
experiments, where differential features are sparse among thousands or even millions of
features being investigated. The conventional practice is to first reduce the original samples
to a vector of p-values and then choose a cutoff to adjust for multiplicity. However, the first
step of data reduction could cause significant loss of information and thus lead to suboptimal
testing procedures. This paper proposes new strategies to extract structural information
in the sample using an auxiliary covariate sequence and develops optimal covariate-assisted
inference procedures for large-scale two-sample multiple testing problems.

We focus on a setting where both mean vectors are individually sparse. Such a setting
arises naturally in many modern scientific applications. For example, the detection of
sequentially activated genes in time-course microarray experiments, considered in Section
B.7 in the Supplementary Material, involves identifying varied effect sizes across different
time points [Calvano et al. (2005); Sun and Wei (2011)]. Since only a small fraction of genes
are differentially expressed from the baseline, the problem of identifying varied levels over
time essentially reduces to a multiple testing problem with several high-dimensional sparse
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vectors (after removing the baseline effects). The second example arises from the detection
of supernova explosions considered in Section 5.5. The potential locations can be identified
by testing sudden changes in brightness in satellite images taken over a period of time.
After the measurements are converted into grey-scale images and vectorized, multiple tests
are conducted to compare the intensity levels between two sparse vectors. Another case
in point is the analysis of differential networks, where the goal is to detect discrepancies
between two or more networks with possibly sparse edges.

We first describe the conventional framework for two-sample inference and then discuss
its limitations. Let X and Y be two random vectors recording the measurement levels of
the same m features under two experimental conditions, respectively. The population mean
vectors are given by µx = E(X) = (µx1, . . . , µxm)ᵀ and µy = E(Y ) = (µy1, . . . , µym)ᵀ. A
classical formulation for identifying differential features is to carry out m two-sample tests:

Hi,0 : µxi = µyi vs. Hi,1 : µxi 6= µyi, 1 ≤ i ≤ m. (1.1)

Suppose we have collected two random samples {X1, . . . ,Xn1
} and {Y1, . . . ,Yn2

} as inde-
pendent copies ofX and Y , respectively. The standard practice starts with a data reduction
step: a two-sample t-statistic Ti is computed to compare the two conditions for feature i,
then Ti is converted to a p-value or z-value. Finally a significance threshold is chosen to
control the multiplicity. However, this conventional practice, which only utilizes a vector of
p-values, may suffer from substantial information loss.

This article proposes a new testing framework that involves two steps. In the first step,
besides the usual primary test statistics, an auxiliary covariate sequence is constructed
from the original data to capture important structural information that is discarded by
conventional practice. In the second step, the auxiliary covariates are combined with the
primary test statistics to construct a multiple testing procedure that improves the accuracy
in inference. Our idea is that the hypotheses become “unequal” in light of the auxiliary
sequence. A key step in our methodological development is to incorporate the heterogeneity
by recasting the problem in the framework of multiple testing with a covariate sequence.
This requires a carefully constructed pair of statistics that lead to a simple bivariate model
and an easily implementable methodology. Section 2 discusses strategies for constructing
the pair of primary and auxiliary variables. Then we develop oracle and data-driven multiple
testing procedures for the consequent bivariate model in Section 3. The proposed method
employs a covariate-assisted ranking and screening (CARS) approach that simultaneously
incorporates the primary and auxiliary information in multiple testing. We show that the
CARS procedure controls the false discovery rate at the nominal level and outperforms
existing methods in power.

We mention two related strategies in the literature: testing following screening and
testing following grouping. In the first strategy, the hypotheses are formed and tested
hierarchically via a screen-and-clean method [Zehetmayer et al. (2005); Reiner-Benaim et al.
(2007); Zehetmayer et al. (2008); Wasserman and Roeder (2009); Bourgon et al. (2010)].
Following that strategy, one can first inspect the sample to identify the union support of µµµx
and µµµy, and then conduct two-sample tests on the narrowed subset to further eliminate the
null locations with no differential levels. The screen-and-clean approach requires sample
splitting to ensure the independence between the screening and testing stages to avoid
selection bias [Rubin et al. (2006)]. However, even the screening stage can significantly
narrow down the focus, sample splitting often leads to loss of power. For example, the
empirical studies in Skol et al. (2006) concluded that a two-stage analysis is in general
inferior compared to a naive joint analysis that combines the data from both stages. The
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second strategy (Liu, 2014) can be described as testing following grouping, that is, the
hypotheses are analyzed in groups via a divide-and-test method. Liu (2014) developed
an uncorrelated screening (US) method, which first divides the hypotheses into two groups
according to a screening statistic, and then applies multiple testing procedures to the groups
separately to identify non-null cases. It was shown in Liu (2014) that US controls the error
rate at the nominal level and outperforms competitive methods in power.

Our approach marks a clear departure from existing methods. Both the screen-and-clean
and divide-and-test strategies involve dichotomizing a continuous variable, which fails to
fully utilize the auxiliary information. By contrast, our proposed CARS procedure models
the screening covariate as a continuous variable and employs a novel ranking and selection
procedure that optimally integrates the information from both the primary and auxiliary
variables. In Section 4, we develop further results on a general bivariate model; our study
reveals the connections between existing methods and provides insights on the advantage
of the proposed CARS procedure. Simulation results in Section 5 demonstrate that CARS
controls the false discovery rate in finite samples and uniformly dominates all existing
methods. The gain in power is substantial in many settings. We illustrate our method to
analyze a time-course satellite image dataset in Section 5.5. The application shows improved
sensitivity of the proposed method in identifying changes between images taken over time.
Section 6 further discusses related issues and open problems. The proofs are provided in
Section 7 and Appendix A. Additional numerical results are given in Appendix B.

2. Extracting Structural Information Using An Auxiliary Sequence

Suppose {Xij : 1 ≤ j ≤ nx} and {Yik : 1 ≤ k ≤ ny}, i = 1, · · · ,m, are repeated measure-
ments of generic independent random variables Xi and Yi, respectively. Let βββ0 = (β0i : 1 ≤
i ≤ m) be a latent baseline vector which itself is sparse [including the special case where
β0i = 0 for all i]. Consider the following hierarchical model

Xij = β0i + µ∗xi + εxij , Yik = β0i + µ∗yi + εyik, (2.1)

with corresponding population means given by µxi = β0i + µ∗xi and µyi = β0i + µ∗yi.

For ease of presentation, we focus on the Gaussian model for the error terms εxij
iid∼

N(0, σ2
xi) and εyij

iid∼ N(0, σ2
yi). More general settings will be discussed in Sections 3.6.

We assume that µ∗xi and µ∗yi, which can be viewed as random perturbations from the base-
line, satisfy µ∗xi ∼ (1 − πx)δ0 + πxgµx(·) and µ∗yi ∼ (1 − πy)δ0 + πygµy (·), where δ0 is the
Dirac delta function, and gµx and gµy are unspecified densities of nonzero effects.

Remark 1. Model (2.1) can be applied to scenarios with non-sparse µµµx and µµµy when
some baseline measurements are available. See Section A.8 for further details. The proposed
methodology only requires X̄i and Ȳi to be normal. In practical situations where nx and
ny are large, our method works well without the normality assumption. Numerical results
with non-Gaussian errors are provided in Section 5.3.

Let n = nx +ny. Denote γx = nx/n and γy = ny/n. The population means µxi and µyi
are estimated by X̄i = (nx)−1

∑nx
j=1Xij and Ȳi = (ny)−1

∑ny
k=1 Yik, respectively.

The two-sample inference problem is concerned with the simultaneous testing of m
hypotheses Hi,0 : µxi = µyi vs Hi,1 : µxi 6= µyi, i = 1, · · · ,m. Let I(·) be an indicator
function. Let T1i and T2i be summary statistics that contain the information about θ1i =
I(µxi 6= µyi) (support of mean difference) and θ2i = I(µxi 6= 0 or µyi 6= 0) (union support),
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respectively. T1i is the primary statistic in inference and T2i is an auxiliary covariate. The
term “auxiliary” indicates that we do not use T2i to make inference on θ1i directly. Instead,
we aim to incorporate T2i in inference to (indirectly) support the evidence provided in the
primary variable T1i. The intuition is that, since the union support is sparse if both µx and
µy are sparse, exploiting this structural information would improve the efficiency of tests.
To see this, note that the continuity of µxi and µyi implies that, with probability one, θ1i
and θ2i obey the following logical relationship:

θ1i = 0 if θ2i = 0. (2.2)

Hence the auxiliary sequence can be utilized to assist inference by providing supplementary
evidence on whether a hypothesis is promising.

We first discuss how to construct the primary and auxiliary statistics from the original
data, and then introduce a bivariate random mixture model to describe their joint distri-
bution. Finally, we formulate a decision-theoretic framework for two-sample simultaneous
inference with an auxiliary covariate.

2.1. Constructing the primary and auxiliary statistics
A key step in our formulation is to construct a pair of statistics (T1i, T2i) such that (i) the
pair extracts information from the data effectively; (ii) the pair leads to a simple bivariate
model via which the logical relationship (2.2) can be exploited. To focus on the main ideas,
we first discuss the Gaussian case with known variances. Extensions to two-sample tests
with non-Gaussian errors and unknown variances are discussed in Section 3.6.

The general strategies for constructing the pair (T1i, T2i) can be described as follows.
First, T1i is used to capture the information on θ1i; hence X̄i − Ȳi should be incorporated
in its expression. Second, to capture the information on the union support θ2i, we propose
to use the weighted sum X̄i + κiȲi, where κi > 0 is the weight to be specified later.
Under the normality assumption, the covariance of X̄i − Ȳi and X̄i + κiȲi is given by
σ2
xi/nx − κiσ2

yi/ny. This motivates us to choose the weight κ∗i = (γyσ
2
xi)/(γxσ

2
yi), which

leads to zero correlation, a crucial property for simplifying the model and facilitating the
methodological development. Finally, the difference and weighted sum are standardized
to make the statistics comparable across tests. Combining the above considerations, we
propose to use the following pair of statistics to summarize the information in the data:

(T1i, T2i) =

√
nxny
n

(
X̄i − Ȳi
σpi

,
X̄i + κ∗i Ȳi√

κ∗i σpi

)
, (2.3)

where σ2
pi = γyσ

2
xi + γxσ

2
yi. Denote TTT 1 = (T1i : 1 ≤ i ≤ m) and TTT 2 = (T2i : 1 ≤ i ≤ m).

2.2. A bivariate random mixture model
We develop a bivariate model to describe the joint distribution of T1i and T2i. Let θθθi =
(θ1i, θ2i). Assume that θθθi are independent and identically distributed (i.i.d.) bivariate ran-
dom vectors that take values in the Cartesian product space {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
For each combination θθθi = (j, k), (T1i, T2i) are jointly distributed with conditional density
f(t1i, t2i|θ1i = j, θ2i = k). Denote πjk = P(θ1i = j, θ2i = k). In practice, we do not know
(θ1i, θ2i) but only observe (T1i, T2i) from a mixture model

f(t1i, t2i) =
∑

(j,k)∈{0,1}2 πjkf(t1i, t2i|θ1i = j, θ2i = k). (2.4)
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Denote πj = P(θji = 1), j = 1, 2. Assume that π1 > 0. The goal is to determine the value
of θ1i based on pairs {(T1i, T2i) : 1 ≤ i ≤ m}.

The mixture model (2.4) is difficult to analyze. However, if T1i and T2i are carefully
constructed as done in Section 2.1, then several simplifications can be made. First, the
logical relationship (2.2) implies that π10 = 0; thus we only have three terms in (2.4).
Second, according to our construction (2.3), T1i and T2i are conditionally independent:

f(t1i, t2i|µxi, µyi) = f(t1i|µxi, µyi)f(t2i|µxi, µyi). (2.5)

The next proposition utilizes (2.5) to further simplify the model.

Proposition 1. The conditional independence (2.5) implies that

f(t1i, t2i|θ1i = 0, θ2i = 0) = f(t1i|θ1i = 0)f(t2i|θ2i = 0);

f(t1i, t2i|θ1i = 0, θ2i = 1) = f(t1i|θ1i = 0)f(t2i|θ1i = 0, θ2i = 1); and

f(t1i, t2i|θ1i = 0) = f(t1i|θ1i = 0)f(t2i|θ1i = 0). (2.6)

The last equation shows that T1i and T2i are independent under the null hypothesis Hi0 :
θ1i = 0. This is a critical result for our later methodological and theoretical developments.
The joint density is given by

f(t1i, t2i) = π00f(t1i|θ1i = 0)f(t2i|θ2i = 0) + π01f(t1i|θ1i = 0)f(t2i|θ1i = 0, θ2i = 1)

+π11f(t1i, t2i|θ1i = 1, θ2i = 1). (2.7)

2.3. Problem formulation
Our goal is to make inference on θ1i = I(µxi 6= µyi), 1 ≤ i ≤ m, by simultaneously testing
m hypotheses Hi,0 : θ1i = 0 vs Hi,1 : θ1i = 1. Compared to conventional approaches, we
aim to develop methods utilizing m pairs {(T1i, T2i) : 1 ≤ i ≤ m} instead of a single vector
{T1i : 1 ≤ i ≤ m}. This new problem can be recast and solved in the framework of multiple
testing with a covariate: T1i is viewed as the primary statistic for assessing significance,
and T2i is viewed as a covariate to assist inference by providing supporting information.

The concepts of error rate and power are similar to those in the conventional settings.
A multiple testing procedure is represented by a thresholding rule of the form

δδδ = {δi = I(Si < t) : i = 1, · · · ,m} ∈ {0, 1}m, (2.8)

where δi = 1 if we reject hypothesis i and δi = 0 otherwise. Here Si is a significance index
that ranks the hypotheses from the most significant to least significant, and t is a threshold.

In large-scale testing problems, the false discovery rate (FDR, Benjamini and Hochberg,
1995) has been widely used to control the inflation of Type I errors. For a given decision
rule δδδ = (δi : 1 ≤ i ≤ m) of the form (2.8), the FDR is defined as

FDRδδδ = E
[∑m

i=1(1− θ1i)δi
(
∑m
i=1 δi) ∨ 1

]
, (2.9)

where x ∨ y = max(x, y). A closely related concept is the marginal false discovery rate
(mFDR), which is defined by

mFDRδδδ =
E {
∑m
i=1(1− θ1i)δi}
E(
∑m
i=1 δi)

. (2.10)
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Genovese and Wasserman (2002) showed that mFDR = FDR + O(m−1/2) when the BH
procedure (Benjamini and Hochberg, 1995) is applied to m independent tests. We use
mFDR mainly for technical considerations to obtain optimality result. Proposition 7 in
Section 7.2 gives sufficient conditions under which the mFDR and FDR are asymptotically
equivalent and shows that the conditions are fulfilled by our proposed method.

Define the expected number of true positives ETPδδδ = E (
∑m
i=1 θ1iδi). Other related

power measures include the missed discovery rate (MDR, Taylor et al., 2005), average power
(Efron, 2007) and false non-discovery/negative rate (FNR, Genovese and Wasserman, 2002;
Sarkar, 2002). Our optimality result is developed based on the mFDR and ETP. We call a
multiple testing procedure valid if it controls the mFDR at the nominal level and optimal
if it has the largest ETP among all valid mFDR procedures.

3. Oracle and Data-driven Procedures

The basic framework of our methodological developments is explained as follows. We first
consider an ideal situation where an oracle knows all parameters in model (2.7). Section
3.1 derives an oracle procedure. Sections 3.2 and 3.3 discuss an approximation strategy
and related estimation methods, with a refinement given in Section 3.4. The data-driven
procedure and extensions are presented in Sections 3.5 and 3.6.

3.1. Oracle procedure with pairs of observations
The marginal density function for Tji is defined as fj· = (1 − πj)fj0 + πjfj1, where πj =
P(θji = 1) and fj0 = f(tji|θji = 0) and fj1 = f(tji|θji = 1) are the conditional densities for
Tji. Conventional FDR procedures, which are developed based on a vector of p-values or
z-values, are essentially univariate inference procedures that only utilize the information of
T1i. Define the local false discovery rate (Lfdr, Efron et al., 2001)

Lfdr1(t1) =
(1− π1)f10(t1)

f1·(t1)
, (3.1)

where subscript “1” indicates a quantity associated with T1i. It was shown in Sun and Cai
(2007) that the optimal univariate mFDR procedure is a thresholding rule of the form

δδδ(Lfdr1, c) = [I{Lfdr1(t1i) < c} : 1 ≤ i ≤ m], (3.2)

where 0 ≤ c ≤ 1 is a cutoff. Denote QLF(c) the mFDR level of δδδ(Lfdr1, c). Let c∗ = sup{c :
QLF(c) ≤ α} be the largest cutoff under the mFDR constraint. Then δδδ∗ = δδδ(Lfdr1, c

∗) is
optimal among all univariate mFDR procedures in the sense that it has the largest ETP
subject to mFDR ≤ α.

The next theorem derives an oracle procedure for mFDR control when the pairs (T1i, T2i)
are given. We shall see that the performance of δδδ∗, the optimal univariate procedure, can
be greatly improved by exploiting the information in T2i. The oracle procedure under the
bivariate model (2.7) has two important components: an oracle statistic T iOR that optimally
pools information from both T1i and T2i, and an oracle threshold tOR that controls the
mFDR with the largest ETP.

Theorem 1. Suppose (T1i, T2i) follow model (2.7). Let

q∗(t2) = (1− π1)f (t2 | θ1i = 0) . (3.3)
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Define the oracle statistic

T iOR(t1, t2) = P(θ1i = 0|T1i = t1, T2i = t2) =
q∗(t2)f10(t1)

f(t1, t2)
, (3.4)

where f(t1, t2) is the joint density given by (2.7). Then

(a) For 0 < λ ≤ 1, let QOR(λ) be the mFDR level of testing rule {I(T iOR < λ) : 1 ≤ i ≤ m}.
Then QOR(λ) < λ and QOR(λ) is non-decreasing in λ.

(b) Suppose we choose α < ᾱ ≡ QOR(1). Then the oracle threshold λOR = sup{λ :
QOR(λ) ≤ α} exists uniquely and QOR(λOR) = α. Furthermore, define oracle rule
δδδOR = (δiOR : i = 1, · · · ,m), where

δiOR = I(T iOR < λOR). (3.5)

Then δδδOR is optimal in the sense that ETPδδδ ≤ ETPδδδOR for any δδδ in Dα, where Dα
is the collection of all testing rules based on TTT 1 and TTT 2 such that mFDRδδδ ≤ α.

Remark 2. The oracle statistic T iOR is the posterior probability that Hi,0 is true given
the pair of primary and auxiliary statistics. It serves as a significance index providing
evidence against the null. Section 3.2 gives a detailed discussion of q∗(t2) and explains
that it roughly describes how frequently T2i from the null distribution would fall into the
neighborhood of t2. The estimation of TOR and q∗(t2) is discussed in Section 3.3.

Remark 3. Theorem 1 indicates that pooling auxiliary information would not result
in efficiency loss, provided that T2i are carefully constructed according to the principles
described in Section 2.1. Consider the “worst case scenario” where T2i is completely non-
informative: nx = ny, σ2

xi = σ2
yi and µxi = −µyi. In Section A.9 of the Supplementary

Material, we show that under the above conditions T iOR reduces to the Lfdr statistic (3.1),
and the oracle (bivariate) procedure would coincide with the optimal univariate rule (3.2).
Contrary to the intuition that incorporating T2i might negatively affect the performance,
Theorem 1 indicates the power will unlikely be decreased by pooling the auxiliary informa-
tion in T2i. Further numerical evidence is provided in Section 5.4.

The oracle rule (3.5) motivates us to consider a stepwise procedure that operates in two
steps: ranking and thresholding. The ranking step orders all hypotheses from the most
significant to the least significant according to TOR, and the thresholding step identifies the
largest threshold along the ranking subject to the constraint on FDR. Specifically, denote

T
(1)
OR ≤ . . . ≤ T

(m)
OR the ordered oracle statistics and H(1), · · · , H(m) the corresponding

hypotheses. The step-wise procedure operates as follows.

Let k = max
{
j : j−1

∑j
i=1 T

(i)
OR ≤ α

}
. Reject H(1), · · · , H(k). (3.6)

The moving average of the top j ordered statistics, gives an estimate of the FDR [cf. Sun
and Cai (2007)]. Thus the stepwise algorithm (3.6) identifies the largest threshold subject
to the FDR constraint.
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3.2. Approximating TOR via screening
The oracle statistic T iOR is unknown and needs to be estimated. However, standard methods
do not work well for the bivariate model. For example, the popular EM algorithm usually
requires the specification of a parametric form of the non-null distribution; this is often
impractical in large-scale studies where little is known about the alternative. Moreover,
existing estimators often suffer from low accuracy and convergence issues when signals are
sparse. To overcome the difficulties in estimation, we propose a new test statistic T τ,iOR that
only involves quantities that can be well estimated from data. The new statistic provides a
good approximation to T iOR and guarantees the FDR control.

In (3.4), the null density f10 is known by construction. The bivariate density f(t1, t2)
can be well estimated using a standard kernel method [Silverman (1986); Wand and Jones
(1995)]. Hence we shall focus on the quantity q∗(t2). Suppose we are interested in counting
how frequently T2i from the null distribution (i.e. θ1i = 0) would fall into an interval in
the neighborhood of t2: Q∗(t2, h) = # {i : T2i ∈ [t2 − h/2, t2 + h/2] and θ1i = 0} /m. The
quantity is relevant because q∗(t2) = limh→0 E{Q∗(t2, h)}/h. The counting task is difficult
as we do not know the value of θ1i. Our idea is to first apply a screening method to select
the nulls (i.e. θ1i = 0), and then construct an estimator based on selected cases.

Denote Pi the p-value associated with T1i = t1i. For a large τ , say τ = 0.9, we would
reasonably predict that θ1i = 0 if Pi > τ , as most likely large p-values should be from the
null. Hence we may count those T2i with large p-values:

Qτ (t2, h) =
# {i : T2i ∈ [t2 − h/2, t2 + h/2] and Pi > τ}

m(1− τ)
. (3.7)

The adjustment (1− τ) in the denominator comes from the fact that we have only utilized
100(1− τ)% of the data while counting the frequency. Let Aτ denote the set of possible t1i
such that Pi > τ . Using Qτ to replace Q∗, a sensible approximation of q∗(t2) would be

qτ (t2) = lim
h→0

E{Qτ (t2, h)}
h

=

∫
Aτ f(t1, t2)dt1

1− τ
. (3.8)

Intuitively, a large τ would yield a sample that is close to one generated from a “pure”
null distribution and thus reduce the bias qτ (t2)− q∗(t2). Our theory reveals that the bias
is always positive (Proposition 2), and would decrease in τ (Proposition 4). However, a
larger τ would increase the variability of our proposed estimator (as we have fewer samples
to construct the estimator), affecting the testing procedure adversely. The bias-variance
tradeoff is further discussed in Section 3.4.

Substituting qτ (t2) in place of q∗(t2), we obtain the following approximation of T iOR:

T τ,iOR(t1, t2) =
qτ (t2)f10(t1)

f(t1, t2)
. (3.9)

Some important properties of the approximation in (3.9) are summarized in the next propo-
sition, which shows that T τ,iOR overestimates T iOR. Hence if we substitute T τ,iOR in place of
T iOR in (3.6), then fewer rejections will be made, leading to a conservative FDR level.

Proposition 2. (a) T iOR(t1, t2) ≤ T τ,iOR(t1, t2) for all τ . (b) Let δδδτOR be a decision rule

that substitutes T τ,iOR in place of T iOR in (3.6). Then both the FDR and mFDR levels of δδδτOR
are controlled below level α.
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3.3. Estimation of the test statistic
We now turn to the estimation of T τ,iOR. By our construction, the null density f10(t1) is
known. The bivariate density f(t1, t2) can be estimated using a kernel method [Silverman
(1986); Wand and Jones (1995)]:

f̂(t1, t2) = m−1
m∑
i=1

Kh1
(t1 − t1i)Kh2

(t2 − t2i), (3.10)

where K(t) is a kernel function, h1 and h2 are the bandwidths, with Kh(t) = h−1K(t/h).
To estimate qτ (t2), we first carry out a screening procedure to obtain sample T (τ) = {i :
P1i > τ}, and then apply kernel smoothing to the selected observations:

q̂τ (t2) =

∑
i∈T (τ)Kh2

(t2 − t2i)
m(1− τ)

. (3.11)

The next proposition shows that q̂τ (·) converges to qτ (·) in L2 norm.

Proposition 3. Consider q̂τ and qτ respectively defined in (3.8) and (3.11). Assume
that (i) qτ (·) is bounded and have continuous first and second derivatives; (ii) the kernel
K is a positive, bounded and symmetric function satisfying

∫
K(t) = 1,

∫
tK(t)dt = 0 and∫

t2K(t)dt < ∞; and (iii) f
(2)
2· (t2|τ) =

∫
t1∈Aτ

∫
f
(2)
2· (t2|t1)f1·(t1)dt1 is square integrable,

where f2·(t2|t1) is the conditional density of T2 given T1. Then with the common choice of
bandwidth h ∼ m−1/6, we have

E ‖q̂τ − qτ‖2 = E
∫
{q̂τ (x)− qτ (x)}2dx→ 0.

Combining the above results, we propose to estimate T τOR by the following statistic

T̂ τOR(t1, t2) =
q̂τ (t2)f10(t1)

f̂(t1, t2)
∧ 1, (3.12)

where q̂τ (t2) and f̂(t1, t2) are respectively given in (3.11) and (3.10), and x∧ y = min(x, y).

Remark 4. In our proposed estimator, the same bandwidth h2 has been used for the
kernels in both (3.10) and (3.11). Utilizing the same bandwidth across the numerator and
denominator of (3.12) has no impact on the theory, but is beneficial for increasing the
stability of our estimator. More practical guidelines are provided in Section 5.1.

3.4. A refined estimator
This section develops a consistent estimator of q∗(t2). The proposed estimator is important
for the optimality theory in Section 3.5. However, it is computationally intensive and
requires much stronger assumptions which should be scrutinized in practice. The power
gain tends to be limited. In practice we still recommend the simple estimator (3.11). This
section may be skipped for readers who are mainly interested in methodology.

We state in the next proposition some theoretical properties for the approximation error
qτ (t2) − q∗(t2); these properties are helpful to motivate the new estimator and prove its
consistency. Let the CDF of the p-value associated with T1i be G(τ) = (1−π1)τ +π1G1(τ),
where G1 is the alternative CDF. Denote g and g1 the corresponding density functions.
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Proposition 4. Consider T τOR defined in (3.9).

(a). Denote Bq(τ) =
∫
|qτ (t2) − q∗(t2)|dt2 the total approximation error. If G1(·) is

concave, then Bq(τ) decreases in τ .

(b). If limx↑1 g1(x) = 0, then limτ↑1 q
τ (t2) = q∗(t2).

Remark 5. The concavity assumption (or the more general monotone likelihood ratio
condition, MLRC) has been commonly used in the literature (Storey, 2002; Genovese and
Wasserman, 2002; Sun and Cai, 2007); the MLRC should be treated with caution (Cao
et al., 2013). Assumption (b) is also a typical condition (Genovese and Wasserman, 2004),
which requires that the null cases are dominant on the right of the p-value histogram. The
condition holds for one-sided p-values but can be violated by two-sided p-values (Neuvial,
2013). It would be desirable to develop a more general condition in future work.

It follows from Proposition 4 that a large τ is helpful to reduce the bias and the bias
converges to zero when τ → 1. However, a large τ would increase the variance of our
estimator (3.11), which is constructed using the sample T (τ) = {i : P1i > τ}. To address
the bias-variance tradeoff, we propose to first obtain q̂τ for a range of τ ’s, say {τ1, · · · , τk},
and then use a smoothing method to obtain the limiting value of q̂τ when τ → 1. This
approach aims to borrow strength from the entire sample to minimize the bias without
blowing up the variance. Specifically, let τ0 < τ1 < · · · < τk be ordered and equally spaced
points in the inteval (0, 1). Denote q̂τj (t2) the estimates from (3.11), j = 1, · · · , k. We
propose to obtain the local linear kernel estimator q̂∗(t2) ≡ q̂{τ = 1; q̂τ1(t2), · · · , q̂τk(t2)}
as the height of the fit β̂0, where (β̂0, β̂1) minimizes the weighted kernel least squares∑k
j=1(q̂τj − β0 − β1τj)2Khτ (τj − τk). For a given integer r, denote ŝr = k−1

∑k
j=1(τj −

1)rKhτ (τj − τk). It can be shown that (e.g. Wand and Jones, 1995, pp. 119)

q̂∗(t2) = k−1
∑k
j=1

{ŝ2 − ŝ1(τj − τk)}Khτ (τj − τk)q̂τj

ŝ2ŝ0 − ŝ21
. (3.13)

The next proposition shows that q̂∗(t2) is a consistent estimator for q∗(t2).

Proposition 5. Consider q̂τ and q̂∗ that are respectively defined in (3.11) and (3.13).
Denote qτk,(2)(t2) = (d/dτ)2qτ,(2)(t2)|τ=τk . Assume the following conditions hold: (i)
qτk,(2)(t2) is square integrable; (ii) K(·) is symmetric about zero and is supported on [−1, 1];
and (iii) the bandwidth hτ is a sequence satisfying hτ → 0 and khτ →∞ as k →∞. More-
over, assume Condition (i) to (iii) in Proposition 3 and Condition (b) in Proposition 4
hold. We have

E ‖q̂∗ − q∗‖2 = E
∫
{q̂∗(x)− q∗(x)}2dx→ 0 when (m, k)→ 0. (3.14)

3.5. The CARS procedure
The estimated statistics T̂ τ,iOR will be used as a significance index to rank the relative impor-
tance of all hypotheses. Motivated by the stepwise algorithm (3.6), we propose the following
covariate-assisted ranking and screening (CARS) procedure.

Procedure 1 (CARS Procedure). Consider model (2.7) and estimated statistics

T̂ τ,iOR (3.12). Denote T̂
τ,(1)
OR ≤ · · · ≤ T̂ τ,(m)

OR the ordered statistics and H(1), · · · , H(m) the cor-

responding hypotheses. Let k = max
{
j : j−1

∑j
i=1 T̂

τ,(i)
OR ≤ α

}
. Then reject H(1), · · · , H(k).
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To ensure good performance of the data-driven procedure, we require the following
conditions for estimated quantities:

(C1). E‖q̂τ − qτ‖2 → 0. (C1′). E‖q̂∗ − q∗‖2 → 0.

(C2). E
∥∥∥f̂ − f∥∥∥2 = E

[∫ ∫
{f̂(t1, t2)− f(t1, t2)}2dt1dt2

]
→ 0.

Remark 6. Proposition 3 shows that (C1) is satisfied by the proposed estimator (3.11).
Proposition 5 shows that (C1′) is satisfied by the smoothing estimator (3.14) under stronger
assumptions. Finally, (C2) is satisfied by the standard choice of bandwidth ht1 ∼ m−1/6,
ht2 ∼ m−1/6; see, for example, page 111 in Wand and Jones (1995) for a proof.

The asymptotic properties of the CARS procedure are established by the next theorem.

Theorem 2. Asymptotic validity and optimality of CARS.

(a). If Conditions (C1) and (C2) hold, then both the mFDR and FDR of the CARS
procedure are controlled at level α+ o(1).

(b). If Conditions (C1′) and (C2) hold, and we substitute q̂∗ (3.14) in place of q̂τ in (3.12)
to compute T̂ τOR, then the FDR level of the CARS procedure is α + o(1). Moreover,
denote ETPCARS and ETPOR the ETP levels of CARS and the oracle procedure,
respectively. Then we have ETPCARS/ETPOR = 1 + o(1).

3.6. The case with unknown variances and non-Gaussian errors
For two-sample tests with unknown and unequal variances, we can estimate σ2

xi and σ2
yi

by S2
xi = (nx)−1

∑nx
j=1(Xij − X̄i)

2 and S2
yi = (ny)−1

∑ny
j=1(Yij − Ȳi)

2, respectively. Let

κ̂∗i = (γyS
2
xi)/(γxS

2
yi) and S2

pi = γyS
2
xi+γxS

2
yi. The following pair will be used to summarize

the information in the sample:

(T1i, T2i) =

√
nxny
n

(
X̄i − Ȳi
Spi

,
X̄i + κ̂∗i Ȳi√

κ̂∗iSpi

)
. (3.15)

For the case with unknown but equal variances (e.g. σ2
xi = σ2

yi), we modify (3.15) as follows.

First, κ̂∗i is replaced by κ∗ = γy/γx. Second, S2
pi is instead estimated by S2

pi = γxS
2
xi+γyS

2
yi.

Finally T1i and T2i are plugged into (3.12) to compute the CARS statistic, which is further
employed to implement Procedure 1.

T1i and T2i are not strictly independent when estimated variances are used. The follow-
ing proposition shows that T1i and T2i are asymptotically independent under the null.

Proposition 6. Consider model (2.1). Assume that the error terms (possibly non-
Gaussian) of Xij and Yij have symmetric distributions and finite fourth moments. Then
(T1i, T2i) defined in (3.15) are asymptotically independent when Hi,0 : µxi = µyi is true.

The expression for asymptotic variance-covariance matrix, which is given in Section A.6
of the Supplementary Material, reveals that the asymptotic independence holds for non-
Gaussian errors as long as the error distributions are symmetric. Our simulation results
in Section 5.3 confirm that unknown variances and non-Gaussian errors have almost no
impact on the performance of CARS. Therefore the plug-in methods are recommended for
practical applications. The case with skewed distribution requires further research, and a
full theoretical justification of CARS methodology is still an open question.
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4. Extensions and Connections with Existing Work

This section considers the extension of our theory to a general bivariate model. The results
in the general model provide a unified theoretical framework for understanding different
testing strategies, which helps gain insights on the connections between existing methods.

We substitute (Ti, Si) in place of (T1i, T2i) in this section. This change reflects a more
flexible view of the auxiliary covariate: Si can be either continuous or discrete, from either
internal or external data, and we do not explicitly estimate the joint density of Ti and Si as
done in previous sections. Sections 4.1 to 4.5 assume that Ti follow a continuous distribution
with a known density under the null; the case with unknown null density is discussed in
Section 4.6. We allow Si to be either continuous or categorical and hence eliminate the
notation θ2i. (Previously θ2i denotes the union support, which is only needed when T2i has
a density with a point mass at 0.) As a result, the subscript “1” in θ1i is suppressed for
notational convenience, where θi = 0/1 stands for a null/non-null case.

4.1. A general bivariate model
Suppose Ti and Si follow a joint distribution Fi(t, s). The optimal (oracle) testing rule is
given by the next theorem, which can be proven similarly as Theorem 1.

Theorem 3. Define the oracle statistic under the general model

TGOR(t, s) = P(θi = 0|Ti = t, Si = s). (4.1)

Denote QGOR(λ) the mFDR level of δδδ(TGOR, λ), where δδδ(TGOR, λ) = {I(TGOR(t, s) < λ) : 1 ≤
i ≤ m}. Let λOR = sup{λ ∈ (0, 1) : QGOR(λ) ≤ α}. Define the oracle mFDR procedure
under the general model as δδδGOR = δδδ(TGOR, λOR). Then δδδGOR is optimal in the sense that for
any δδδ such that mFDRδδδ ≤ α, we always have ETPδδδ ≤ ETPδδδGOR .

Theorem 1 can be viewed as a special case of Theorem 3. However, Theorem 3 is of
less practical importance as the “best” data-driven solution to Theorem 3 may depend on
a number of factors such as (i) whether the auxiliary statistic is categorical or continuous;
(ii) whether the null distribution of Ti is fixed and known; (iii) whether Si and Ti are

independent, and etc. The key issue is that estimating TG,iOR is very difficult in a general
bivariate model. Under some special cases, TGOR can be approximated well. For example,
T τOR provides a good approximation to TGOR under bivariate model (2.4) and the conditional
independence assumption (2.6). When Si is categorical, the oracle procedure can also be
approximated well. This important special case is discussed next.

4.2. Discrete case: multiple testing with groups
We now consider a special case where the auxiliary covariate Si is categorical. A concrete
scenario is the multi-group random mixture model first introduced in Efron (2008). See
also Cai and Sun (2009). The model is useful to handle large-scale testing problems where
data are collected from heterogeneous sources. Correspondingly, the m hypotheses may
be divided into, say, K groups that exhibit different characteristics. Let Si denote the
group membership. Assume that Si takes values in {1, · · · ,K} with prior probabilities
{π1, · · · , πK}. Consider the following conditional distributions:

(Ti|Si = k) ∼ fk1 = (1− πk1 )fk10 + πk1f
k
11, (4.2)
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for k = 1, · · · ,K, where πk1 is the proportion of non-null cases in group k, fk10 and fk11 are
the null and non-null densities of Ti, and fk1 = (1 − πk1 )fk10 + πk1f

k
11 is the mixture density

for all observations in group k. The model allows the conditional distributions in (4.2) to
vary across groups; this is desirable in practice when groups are heterogeneous.

Remark 7. In Section A.10 in the supplement, we present a simple example to show
that Ti is not sufficient (as insightfully pointed out by a reviewer), whereas (Ti, Si) is suf-
ficient. Si is ancillary in the sense that its value is determined by an external process
independent from the main parameter. Contrary to the common intuition that Si is “use-
less” for inference, our analysis reveals that Si can be informative. The phenomenon is
referred to as the ancillarity paradox because, to quote Lehmann (page 420, Lehmann and
Casella, 2006), “the distribution of the ancillary, which should not affect the estimation of
the main parameter, has an enormous effect on the properties of the standard estimator.” A
related phenomenon in the estimation context was discussed by Foster and George (1996).
See also the seminal work by Brown (1990) for a paradox in multiple regression.

The problem of multiple testing with groups and related problems have received sub-
stantial attention in the literature (Efron, 2008; Ferkingstad et al., 2008; Cai and Sun, 2009;
Hu et al., 2010; Liu et al., 2016; Barber and Ramdas, 2017). It can be shown that under
model (4.2), the oracle statistic (4.1) is reduced to the conditional local false discovery rate
(CLfdr, Cai and Sun 2009) CLfdri = (1− πk1 )fk10(ti)/f

k
1 (ti) for Si = k, k = 1, · · · ,K. The

CLfdr statistic can be accurately estimated from data when the number of tests is large in
separate groups. However, the CLfdr statistic cannot be well estimated when the number of
groups is large, or when Si becomes a continuous variable. An important recent progress for
exploiting the grouping and hierarchical structures among hypotheses under more generic
settings has been made in Liu et al. (2016), wherein an interesting decomposition of the
oracle statistic was derived:

T iOR(t, s) = 1− {1− P (θ2i = 0|t, s)} {1− P (θ1i = 0|t, s, θ2i = 1)} .

The decomposition explicitly shows how the auxiliary statistic can be used to adjust the
Lfdr statistic, and provides insights on how the grouping effects Si and individual effects Ti
interplay in simultaneous testing. The logical correlation (2.2) can be conceptualized as a
hierarchical constraint and exploited more efficiently (Sarkar and Zhao, 2017).

The result on multiple testing with groups motivates an interesting strategy to approx-
imate the oracle rule. For a continuous auxiliary covariate Si, we can first discretize Si,
then divide the hypotheses into groups according to the discrete variable, and finally ap-
ply group-wise multiple testing procedures. This idea is closely related to the uncorrelated
screening (US) method in Liu (2014); the connection is discussed next.

4.3. Discretization and uncorrelated screening
The idea in Liu (2014) involves discretizing a continuous Si as a binary variable. Define
index sets G1 = {1 ≤ i ≤ m : Si > λ} and G2 = {1 ≤ i ≤ m : Si ≤ λ}, where the tuning
parameter λ divides t1i’s into two groups: T1(G1) = {ti : i ∈ G1} and T1(G2) = {ti :
i ∈ G2}. The uncorrelated screening (US, Liu 2014) method operates in two steps. First,
the BH method (Benjamini and Hochberg, 1995) is applied at level α to the two groups
separately, and then the rejected hypotheses from two groups are combined as the final
output. The tuning parameter λ is chosen in a way such that it yields the largest number
of rejections (two groups combined). US is closely related to the separate analysis strategy
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proposed in Efron (2008). The key difference is that the groups are known a priori in Efron
(2008), whereas the groups are chosen adaptively in Liu (2014). The main merit of US is
that the screening statistic is constructed to be uncorrelated with the test statistic, which
ensures that the selection bias issue can be avoided. Moreover, the divide-and-test strategy
combines the results in both groups; this is different from conventional independent filtering
approaches [Bourgon et al. (2010)], in which one group is completely filtered out.

We now compare different methods under a unified framework. Both US and CARS can
be viewed as approximations of the oracle rule (4.1). The goal is to borrow information from
the external covariate Si to improve the efficiency of simultaneous inference. US adopts the
divide-and-test strategy and only models Si as a binary variable. It suffers from information
loss in the discretization step. Specifically, the auxiliary variables Si can be used to reveal
other useful data structures in addition to sparsity. Consider a toy example where the cases
on the union support can be divided into two types, respectively characterized by low and
high baseline activities; and among the more active ones, a larger proportion would exhibit
differential levels between the two conditions. Intuitively the auxiliary statistics can be used
to identify three groups, respectively with no, low and high activities. Hence the two-group
strategy utilized by US can be potentially outperformed by a three-group strategy that
captures the underlying data structure more effectively. In practice, the data structure can
be complex and finding the “best” grouping is tricky; this sheds lights on the superiority of
CARS, for it fully utilizes the auxiliary data by modeling Si as a continuous variable.

The general framework suggests several directions in which US may be improved. First,
the information of Si may be better exploited, e.g. by creating more groups. However,
it remains unknown how to choose the optimal number of groups. Second, US tests the
hypotheses at FDR level α for both groups. However, Cai and Sun (2009) showed that
the choice of identical FDR levels across groups can be suboptimal. In order to maximize
the overall power, different group-wise FDR levels should be chosen. However, no matter
how smart a divide-and-test strategy may be, discretizing a continuous covariate would
inevitably result in information loss and hence will be outperformed by CARS.

4.4. The “pooling within” strategy for information integration
In Philosophy and Principles of Data Analysis (Tukey, 1994), Tukey coined two witted terms
to advocate some of his favorite information integration strategies: borrowing strength and
pooling within. The idea of borrowing strength, which was investigated extensively and
systematically by researchers in both simultaneous estimation and multiple testing fields,
has led to a number of impactful theories and methodologies exemplified by the James-
Stein’s estimator (James and Stein, 1961) and local false discovery rate methodology (Efron
et al., 2001). By contrast, the direction of “pooling within” has been less explored. Tukey
described it, in a very different scenario from ours, as a two step strategy that involves
first gathering quantitative indications from “within” different parts of the data, and then
“pooling” these indications into a single overall index (Tukey, 1994, pp. 278). Our work
formalizes a theoretical framework for the “pooling within” idea in the context of two-
sample multiple testing: first constructing multiple indications from within the data (i.e.
independent and comparable pairs), and second deriving an overall index (i.e. the oracle
statistic) that optimally combines the evidences exhibited from both statistics.

Our work differs in several ways from existing works on multiple testing with covariate
(Ferkingstad et al., 2008; Zablocki et al., 2014; Scott et al., 2015). First, the covariate in
other works is collected externally from other data sources, whereas the auxiliary infor-
mation in our work is gathered internally within the primary data set. Second, in other
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works it has been assumed that the null density would not be affected by the external co-
variate. However, the assumption should be scrutinized in practice as it may not always
hold. Under our testing framework, the requirement of a fixed null density is formalized as
the conditional independence between the primary and auxiliary statistics. The conditional
independence is proposed as a principle for information extraction, and is automatically
fulfilled by our approach to constructing the auxiliary sequence.

CARS makes several new methodological and theoretical contributions. First, under
a decision-theoretic framework, the oracle CARS procedure is shown to be optimal for
information pooling. Second, existing methodologies on testing with covariate are mostly
developed under the Bayesian computational framework and lack theoretical justifications.
By contrast, our data-driven CARS procedure is a non-parametric method and enjoys nice
asymptotic properties. Such FDR theories, as far as we know, are new in the literature.
Third, the screening approach employed by CARS reveals interesting connections between
sparsity estimation and multiple testing with covariate, which is elaborated next.

4.5. Capturing sparsity information via screening
A celebrated finding in the FDR literature is that incorporating the estimated proportion
of non-nulls [π1 = P (θi = 1)] can improve the power (Benjamini and Hochberg, 2000;
Storey, 2002; Genovese and Wasserman, 2002). In light of Si, the proportion becomes
heterogeneous; hence it is desirable to utilize the conditional proportions π1(s) = P (θi =
1|Si = s) to improve the power (Zablocki et al., 2014; Scott et al., 2015; Li and Barber,
2016). In a similar vein, earlier works on multiple testing with groups (or discrete Si)
reveal that varied sparsity levels across groups can be exploited to construct more powerful
methods (Ferkingstad et al., 2008; Cai and Sun, 2009; Hu et al., 2010). Estimating π1(s)
with a continuous covariate is a challenging problem. Most existing works (Zablocki et al.,
2014; Scott et al., 2015) employ Bayesian computational algorithms that do not provide
theoretical guarantees. Notable progress has been made by Boca and Leek (2017). However,
their theory requires a correct specification of the underlying regression model, which cannot
be checked in practice. Next we discuss how the screening idea in Sections 3.3 and 3.4 can
be extended to derive a simple and elegant non-parametric estimator of π1(s).

Fig. 1 gives a graphical illustration of the proposed estimator. We generate m = 105

tests with X̄i ∼ N(0, 1) and Ȳi ∼ 0.8N(0, 1) + 0.2N(2, 1); hence Ti = (1/
√

2)(X̄i − Ȳi)
and Si = (1/

√
2)(X̄i + Ȳi). Suppose we are interested in counting how many Si would fall

into the interval [t2 − h, t2 + h] with t2 = 2 and h = 0.3. The counts are represented by
vertical bars on Panel (a) for each p-value interval. As shown in Proposition 1, Ti and Si
are independent under the null [cf. Equation (2.6)]. Therefore we can see that the counts
of Si are roughly uniformly distributed when the p-value of Ti is large. Expanding the
interval [t2 − h, t2 + h] to the entire real line (which actually corresponds to discarding the
information in Si), we obtain the histogram of all p-values [Panel (b)].

We start with a description of a classical estimator [Schweder and Spjøtvoll (1982);
Storey (2002)] for π1; see Langaas et al. (2005) for a detailed discussion of various extensions.
Let Q(τ) = #{Pi > τ}, then by Fig. 1. (b), the expected counts covered by light grey
bars to the right of the threshold τ can be approximated as E{Q(τ)} = m(1 − π1)(1 − τ).
Setting the expected and actual counts equal, we obtain π̂τ1 = 1−Q(τ)/{m(1− τ)}.

Next we consider the conditional proportion π1(s) = P (θi = 1|Si = s). Assume that
π1(s) and f(s), the density of Si, are constants in a small neighborhood [s − h/2, s +
h/2]. Then the expected counts of the p-values from the null distribution in the interval
[s − h/2, s + h/2] can be approximated by Qτ (s, h) ≈ {1 − π1(s)}f(s)h. The other way of
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(b). Histogram of p−values

Fig. 1. A graphical illustration of the smoothing estimator (4.3). (a). The counts of Si are uniformly
distributed on the right. The bias decreases and the variability increases when τ increases. (b). The
histogram of all p-values. Similarly, the p-values are approximately uniformly distributed on the right.

counting can be done using (3.7) in Section 3.2. In obtaining (3.7), we exploit the fact that
the counts Si are roughly uniformly distributed to the right of the threshold τ . Taking the
limit, we obtain π1(s) = 1−{f(s)}−1 limh→0Q

τ (s, h)/h = 1− qτ (s)/f(s). Finally, utilizing
the screening approach (3.11), we propose the following nonparametric smoothing estimator

π̂τ1 (s) = 1−
∑
i∈T (τ)Kh (s− si)

(1− τ)
∑m
i=1Kh(s− si)

. (4.3)

Choosing tuning parameter τ is an important issue but has gone beyond the scope of the
current work; see Storey (2002); Langaas et al. (2005) for further discussions.

4.6. Heterogeneity, correlation and empirical null
Conventional FDR analyses treat all hypotheses exchangeably. However, the hypotheses
become “unequal” in light of Si, and it is desirable to incorporate, for example, the varied
conditional proportions in a testing procedure to improve the efficiency. This section further
discusses the case where the heterogeneity is reflected by disparate null densities.

A key principle in our construction is that the primary and auxiliary statistics are con-
ditionally independent under the null. However, in many applications where the auxiliary
information is collected from external data, Si may be correlated with Ti. Then the FDR
procedure may become invalid if Si is incorporated inappropriately. For example, if the
grouping variable Si is correlated with the p-value, then applying Benjamini-Hochberg’s
(BH) procedure to hypotheses in separate groups would be problematic because the null
distributions of the p-values in some groups may no longer be uniform. A partial solution
to resolve the issue is to estimate the empirical null distributions (Efron, 2004; Jin and
Cai, 2007) for different groups, instead of using the theoretical null directly. The theory
and methodology in Efron (2008) and Cai and Sun (2009), which allow the use of varied
empirical nulls across different groups, can be applied to control the FDR. However, as we
previously mentioned, discretizing a continuous Si fails to fully utilize the auxiliary informa-
tion. The estimation of the empirical null with a continuous Si is an interesting problem for
future research. The nonparametric smoothing idea in (4.3) might be helpful but additional
difficulties may arise. The limitations of the current methodology and open questions will
be discussed in Section 6.
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5. Numerical Results

This section investigates the numerical performance of CARS using both simulated and
real data. We compare the oracle and data-driven CARS procedures, respectively denoted
by OR and DD, with existing methods, including the Benjamini-Hochberg procedure (BH,
Benjamin and Hochberg, 1995), the adaptive z-value procedure (AZ, Sun and Cai 2007), and
the uncorrelated screening procedure (US, Liu 2014). We first describe the implementation
of CARS in Section 5.1. Sections 5.2 and 5.3 respectively consider (i) the case with known
and unequal variances and (ii) the case with estimated variances and non-Gaussian errors.
Section 5.4 provides numerical evidence to show the merit of CARS when the two means
have opposite signs. An application to Supernova Detection is discussed in Section 5.5.
Additional numerical results, including the non-informative case (Section B.2), completely
informative case (Section B.3) and dependent tests (Section B.6), are provided in Section
B of the Supplementary Material.

5.1. The implementation and R-package CARS

The R-package CARS has been developed to implement the proposed method. This section
describes implementation details and some practical guidelines.

The bivariate density estimator f̂(t1, t2) can become unstable in very sparse settings,
which may lead to slightly elevated FDR level (cf. top left panel in Figure 2). To increase
the stability of CARS in the extremely sparse setting where the non-null proportion is
vanishingly small, the CARS package has included a “sparse” option, which implements a
conservative but more stable density estimator

f̂υ(t1, t2) = (1− π̂2)f10(t1)f20(t2) + GL(υ)
{

1− F̂DR2(υ)
}
f̂(t1, t2|L̂fdr2 < υ). (5.1)

Here GL(υ) = m−1
∑m
i=1 I{Lfdr2(t2i < υ)} is an empirical CDF, F̂DR2(υ) is the estimated

FDR level, and υ is the screening level. The first term on the right hand side of (5.1) is
based on known densities, which stabilizes the bivariate density estimate in regions with
few observations. Our numerical studies in Section B.3 show that the choice of υ has
little impact in the range of 0.1 to 0.3; the default choice in the CARS package is υ = 0.1.
To estimate the bivariate density f(t1, t2|Lfdr2 < υ), we apply the R package ash to the

sample T = {t2i : L̂fdr(t2i) < υ}. We explain in Section A.11 that the screening step would
underestimate f(t1, t2) and hence lead to a conservative FDR control. The performance
of the modified density estimator is investigated in Section 5.3 for extremely sparse case
(including k = 0). For the global null case, one may consider a hybrid strategy as done in
Durand (2017) that include a global testing step (Donoho and Jin, 2004; Cai and Wu, 2014)
to test the hypothesis that all effects are zero; run CARS if the global null is rejected.

In estimating (3.11), the CARS package uses the Lfdr as the screening statistic (as opposed
to the p-values). A correction factor similar to 1− τ is needed and can be easily computed
from data. Related formulae and computational details are described in Section A.12 in
the Supplement. Although the p-values lead to simpler and more intuitive descriptions of
the methodology, we found that screening via Lfdr leads to improved stability in tuning for
finite samples. The intuition is that the Lfdr, which contains information about the sparsity
and non-null density, provides a testing rule that is more adaptive to the data. Section B.3
in the Supplement investigates the choice of the tuning parameter τ when the Lfdr is used.
In general as τ increases, the FDR is closer to the nominal level but the stability decreases.
The default choice in our package is τ = 0.9, which has been used in all our simulations.
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The R package np is used to choose the bandwidths h1 and h2 in equation (3.10). We
have adopted two strategies to improve the performance. First, the bandwidth h1 and h2
are chosen based on the normal reference rule restricted to the samples with Lfdr1 < 0.5.
The restriction leads to more informative bandwidths as this subset is the more relevant
part of the sample for the multiple testing problem. Second, the same h2 has been used in
(3.11) to obtain the numerator of (3.12). This strategy is helpful to increase the stability
of the estimator [cf. Remark 4]. Finally we note that these strategies are only practical
guidelines in finite samples; the asymptotic theories are not affected.

5.2. Simulation I: known variances
Consider model (2.1). Denote µx,i1:i2 = (µx,i1 , · · · , µx,i2) and µy,i1:i2 = (µy,i1 , · · · , µy,i2)
the vectors of consecutive observations from i1 to i2. The two original samples are denoted
{xxx1, · · · ,xxxnx} and {yyy1, · · · , yyyny}, with corresponding means µx and µy. Let σxi = 1,
σyi = 2, nx = 50 and ny = 60. Our simulations use m = 5000 and FDR level α = 0.05. We
consider the following 3 settings, where different methods are applied to simulated data and
the results are averaged over 500 replications. The FDR and average power (proportion of
differential effects that are correctly identified) are plotted as functions of varied parameter
values and displayed in Figure 2.

Setting 1: we set µx,1:k = 5/
√

30, µx,(k+1):(2k) = 4/
√

30, µx,(2k+1):m = 0, µy,1:k = 2/
√

30,

µy,(k+1):(2k) = 4/
√

30 and µy,(2k+1):m = 0. Here k denotes the sparsity level: the
proportion of locations with differential effects is k/m, and the proportion of nonzero
locations is (2k)/m. We vary k from 100 to 1000 to investigate the effect of sparsity.

Setting 2: we use k1 and k2 to denote the number of nonzero locations and the number
of locations with differential effects, respectively. Let µx,1:k2 = 5/

√
30, µx,(k2+1):k1 =

4/
√

30, µx,(k1+1):m = 0, µy,1:k2 = 2/
√

30, µy,(k2+1):k1 = 4/
√

30 and µy,(k1+1):m = 0.
We fix k1 = 2000 and vary k2 from 100 to 1000. This setting investigates how the
informativeness of the auxiliary covariate would affect the performance of different
methods. Note that as k2 increases, the conditional probability π1|1 = P(θ1i = 1|θ2i =
1) also increases, and the auxiliary covariate becomes more informative.

Setting 3: We fix k = 750 and set µx,1:k = µ0/
√

30, µx,(k+1):(2k) = 3/
√

30, µx,(2k+1):m = 0,

µy,1:k = 2/
√

30, and µy,(k+1):(2k) = 3/
√

30, µy,(2k+1):m = 0. To investigate the impact
of the effect sizes, we vary µ0 from 3.5 to 5.

We can see that the CARS procedure is more powerful than conventional univariate
methods such BH and AZ, and is superior than US which only partially utilizes the auxil-
iary information. A more detailed description of simulation results is given below. (a). All
methods control the FDR at the nominal level 0.05 approximately. BH is slightly conser-
vative and US is very conservative. (b). Univariate methods (BH and AZ) are improved
by bivariate methods (US and CARS) in most settings. This shows that exploiting the
auxiliary information is helpful. (c). US is uniformly dominated by CARS. This is ex-
pected because US only models T2i as a binary variable whereas CARS fully utilizes the
information in T2i. (d). DD has similar performance as OR in most settings. However, DD
can be conservative in FDR control in some settings and hence has less power compared
to OR (cf. Setting 3, bottom row of Figure 1). This has been predicted by our theory
(Proposition 5). (e). Setting 1 shows that the gain in efficiency (of bivariate methods over
univariate methods) decreases as k (or the sparsity level) increases. (f) Setting 2 shows that
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Fig. 2. Two-sample tests with known variances. The FDR and average power (ETP divided by
the number of non-nulls) are plotted against varied non-null proportions (top row) and conditional
proportions (middle row) and effect sizes (bottom row). DD (◦), BH (4), OR (�), AZ (+) and US (�).
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the efficiency gain of CARS increases when k2 increases. Note k2 is proportional to π1|1
(the informativeness of the auxiliary covariate). (g). Setting 3 shows that the efficiency
gain of CARS increases as the signal strength decreases (note that a smaller µ0 corresponds
a larger difference in effect sizes).

5.3. Simulation II: estimated variances and non-Gaussian errors
We consider similar simulation settings as the previous section with three modifications.
First, we substitute the estimated variances in place of known variances. Second, to investi-
gate the performance of our method with non-Gaussian errors, we modify Setting 3 slightly
by generating εxij and εyik from t-distribution with df = 4 and df = 5, respectively. Finally,
we vary k from 1 to 200 to to investigate the performance of CARS under different sparsity
regimes. The modified density estimator f̂υ(t1, t2), defined in (5.1), has been used in all
settings. The simulation results are summarized in Figure 3.

The patterns are very similar to those in Simulation I; our conclusions on the comparison
of different methods remain the same. We mention the following points. (a). Settings 1-2
show that the CARS works well with estimated variances. (b). Setting 3 shows that CARS is
robust to the Gaussian assumption. (c). Under the very sparse setting, the modified CARS
procedure is conservative for FDR control but still outperforms competitive methods.

5.4. Simulation III: means with opposite signs
Our testing framework utilizes T2i as auxiliary statistics to assist inference. It is possible
that T2i may be non-informative but this auxiliary information cannot hurt. This important
point has been explained by Remark 3; see also Section A.9 in the Supplementary Material.
Here we provide numerical evidence to support the claim.

Consider a setting in which the two means have opposite signs. We shall see that CARS
outperforms univariate methods as long as the two means do not cancel out with each other
precisely. This confirms our claim that CARS, which benefits from an enhanced signal to
noise ratio by exploiting the auxiliary data, always dominates the univariate methods.

Let εxij ∼ N(0, 1) and εyik ∼ N(0, 1) be iid noise. Set nx = ny = 50. In our simulation,
the number of tests is m = 10, 000. The two mean vectors are given below:

µµµx,1:500 = 3/
√

50, µµµx,501:1000 = 4/
√

50, µµµx,1001:m = 0

µµµy,1:500 = (3c)/
√

50, µµµy,501:1000 = 4/
√

50, µµµy,1001:m = 0.

We vary c from −1 to 0, where c = −1 corresponds to the least favorable situation where the
two means cancel out precisely. We apply the BH procedure (BH), oracle CARS procedure
(OR) and data-driven CARS procedure (DD) to the simulated data sets. The FDR and
power are obtained based on 200 replications. The simulation results are summarized by
Figure 4. We can see that when c = −1, all methods have similar power. As c increases to
zero, the power gain of CARS become more pronounced.

5.5. Application in Supernova Detection
This section applies CARS for analysis of time course satellite imaging data. Figure 5 shows
the time course g-band images of galaxy M101 collected by the Palomar Transient Factory
survey (Law et al., 2009). The images indicate the appearance of SN 2011fe, one of the
brightest supernovas known up to date (Nugent et al., 2011). A major goal of our analysis
is to detect the discrepancies between images taken over time so that we can narrow down
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Fig. 3. Two-sample tests with unknown variances and non-Gaussian errors. The FDR and average
power are plotted against varied non-null proportions (top row), conditional proportions (bottom row).
The displayed procedures are DD (◦), BH (4), OR (�), AZ (+) and US (�).
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the potential locations for Supernova explosions. More accurate measurements and further
investigations will then be carried out on the narrowed subset of potential locations.

Fig. 5. From left to right, images are taken respectively on August 23, 24, and 25, 2011. The arrows
clearly indicate the explosion of SN 2011fe.

The satellite data are recorded and converted into gray-scale images of size 516 × 831
(or m = 428, 796 pixels). Each pixel corresponds to a value ranging from 0 to 1 that
indicates the intensity level of the influx from stars. We use image 1 as the baseline. Its
grey-scale pixel values are subtracted from those in images 2 and 3. These differences
are then vectorized as xxx = (x1, · · · , xm) and yyy = (y1, · · · , ym) (respectively representing
“image 2− image 1” and “image 3− image 1”).

We plot the histograms and find that the null distributions of xxx and yyy are different.
This can be explained by the lapse in times at which these images are taken (the brightness
of these g-band images changes gradually over time). The supernova data have significant
amount of background noise in each image, and the average magnitudes of the background
noise vary a lot from image to image. To remove the image-specific background noise, we
first estimate the empirical null distributions based on the center part of the histograms.
The variances of observations are assumed to be homoscedastic and are estimated using
all pixels. For xxx and yyy, we have N(0.0028, 0.0023) and N(0.044, 0.0027), respectively. We
then standardize the observations as xxxst and yyyst, which are used in our analysis. We do not
take the difference xxx − yyy directly as it would create many false signals due to the varied
magnitudes of the background noise. The standardized measurements xxxst and yyyst from the
two images seem to be comparable as most of pairs (xsti , y

st
i ) have similar values.

Next we carry out m = 428, 796 two-sample tests with known variances. For standard-

ized observations xxxst and yyyst the variances are known to be 1. Then t1i =
xsti −y

st
i√

2
and

t2i =
xsti +ysti√

2
. We apply BH, AZ, US and CARS procedures at FDR levels 0.01%, 1% and

5%. Figure 12 in the Supplementary Material shows the rejected pixels in the 516 × 831
layout for each method under different FDR levels. The estimated sparsity levels for t1t1t1 and
t2t2t2 are respectively 1.47% and 49.5%. The corresponding estimated support size at τ = 0.5
is 6285. We report the thresholds of different testing procedures in Table 1.

We can see that more information can be harvested from the data by using auxiliary
information. In particular, at FDR level 0.01%, the supernova is missed by BH and AZ but
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Table 1. Thresholds and Total Number of Rejections (in parentheses) of Different Testing Procedures
FDR level BH procedure Adaptive Z procedure US (two thresholds) CARS

10−4 3.66× 10−10 (4) 2.75× 10−4 (5) 3.24, 5.46 (22) 4.38× 10−4 (35)

0.01 9.91× 10−7 (22) 3.37× 10−2 (24) 2.51, 4.87 (38) 9.25× 10−2 (58)

0.05 7.38× 10−6 (64) 0.39 (69) 1.92, 4.42 (80) 0.26 (109)

detected by CARS. To further quantify our procedure’s superiority, we count the total num-
ber of rejections in Table 1 (numbers in parentheses). We can see that CARS consistently
detects more signals from the satellite images than competing methods.

6. Discussion

Covariate-assisted multiple testing can be viewed as a special case of a much broader class
of problems under the theoretical framework of integrative simultaneous inference, which
covers a range of topics including multiple testing with external or prior domain knowledge
(Benjamini and Hochberg, 1997; Basu et al., 2017), partial conjunction tests and set-wise
inference (Benjamini and Heller, 2008; Sun and Wei, 2011; Du and Zhang, 2014), and repli-
cability analysis (Heller et al., 2014; Heller and Yekutieli, 2014). A coherent theme in these
problems is to combine the information from multiple sources to make more informative de-
cisions. Tukey’s “pooling within” strategy provides a promising approach in such scenarios
where quantitative indications might be hidden in various parts of massive data sets.

The current formulations and methodologies in integrative data analysis differ substan-
tially. A general theory and methodology is yet to be developed for handling various types
of problems in a unified framework. For instance, in weighted FDR analysis (Benjamini and
Hochberg, 1997), the external domain knowledge is incorporated as the weights in modified
FDR and power definitions to reflect the varied gains and losses in decisions. By contrast,
covariate-assisted multiple testing still utilizes unweighted FDR and power definitions. The
connection of CARS to theories on optimal weights is still an open issue (Roeder and
Wasserman, 2009; Roquain and Van De Wiel, 2009). Moreover, in partial conjunction tests
and replicability analysis, the summary statistics from different studies are of equal impor-
tance, which marks a key difference from covariate assisted inference where some statistics
are primary while others are secondary.

We conclude our discussion with a few more open issues.

• Are there better ways to construct the auxiliary sequence? Our theory only shows that
CARS is optimal when the pairs are given. How to construct an optimal pair from data
is still an open question. For instance, in situations where two means have opposite
signs, the sum of absolute values may better capture the sparsity information but
would give rise to a correlated pair, which cannot be handled by the current testing
framework.

• How to deal with multiple testing dependency? The CARS method cannot be applied
to dependent tests as it assumes that Ti are independent. Our simulation studies show
that CARS controls the FDR under weak dependence. However, the result is based
on very limited empirical studies, which lack theoretical supports. An important
direction is to develop new theory and methodology for the dependent case.

• How to generalize the idea to settings where the null distribution is unknown? This
important situation may arise from the classical two-sample tests where the null dis-
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tribution is calibrated with permutations. We conjecture that the CARS procedure,
which requires explicit form of the null density, may be tailored by using a different,
probably more ad hoc, approximation. For example, informative weights may be de-
rived from the auxiliary data and incorporated into the permutation based p-values
via some grouping and weighting strategy.

• How to construct the auxiliary sequence in more general settings? This article focuses
on the two-sample tests. It would be of interest to extend the methodology to simul-
taneous ANOVA tests. Moreover, CARS provides a useful strategy for extracting the
sparsity structure from data. There are other important structures in the data such
as heteroscedasticity, hierarchy and dependency, which may also be captured by an
auxiliary sequence. It remains an open question on how to extract and incorporate
such structural information effectively to improve the power of a testing procedure.

• How to summarize the auxiliary information in high-dimensional settings? The pro-
posed CARS methodology requires the joint modeling of the primary and auxiliary
statistics, which cannot handle many covariate sequences because the joint density
estimator would greatly suffer from high-dimensionality. A fundamental issue is to
develop new principles for information pooling, or optimal dimension reduction, in
multiple testing with high-dimensional covariates.

• How to make inference with multiple sequences? In partial conjunction tests and
replicability analysis, an important feature is that the means (of summary statistics)
from separate studies are individually sparse. We expect that similar strategies for
extracting and sharing sparsity information among multiple sequences would improve
the accuracy of simultaneous inference. However, as opposed to covariate-assisted
inference where there is a sequence of primary statistic, in partial conjunction tests
and replicability analysis all sequences are of equal importance, which poses new
challenges for problem formulation and methodological development.

7. Proofs of Main Theorems

This section proves the main theorems. The proofs of other propositions are provided in
the Supplementary Material.

7.1. Proof of Theorem 1
Proof. We first show that the two expressions of T iOR in (3.4) are equivalent. Recall q∗(t2) =

(1− π1)f (t2 | θ1i = 0). Applying Bayes theorem and using the conditional independence between
T1i and T2i under the null θ1i = 0 (Proposition 1), we obtain

T iOR(t1, t2) =
P(θ1i = 0)f(t1, t2|θ1i = 0)

f(t1, t2)
=
q∗(t2)f10(t1)

f(t1, t2)
.

Part (a). Let QOR(t) = αt. We first show that αt < t. According to the mFDR definition,

E(TTT1,TTT2)

{∑m
i=1(T iOR − αt)I(T iOR < t)

}
= 0, (7.1)

where the subscript (TTT 1,TTT 2) indicates that the expectation is taken over the joint distribution of
(TTT 1,TTT 2). The above equation implies that αt < t; otherwise all terms in the summation on its LHS
would be either zero or negative.
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Next we show that QOR(t) is monotone in t. Let QOR(tj) = αj for j = 1, 2. We only need to
show that if t1 < t2, then α1 ≤ α2. We argue by contradiction. If α1 > α2, then

(T iOR − α2)I(T iOR < t2) = (T iOR − α2)I(T iOR < t1) + (T iOR − α2)I(t1 ≤ T iOR < t2)

≥ (T iOR − α1)I(T iOR < t1) + (α1 − α2)I(T iOR < t1)

+(T iOR − α1)I(t1 ≤ T iOR < t2).

Next take expectations on both sides and sum over all i. We claim that

ETTT1,TTT2

{∑m
i=1(T iOR − α2)I(T iOR < t2)

}
> 0. (7.2)

The above inequality holds since (i) ETTT1,TTT2

{∑m
i=1(T iOR − α1)I(T iOR < t1)

}
= 0, (ii) ETTT1,TTT2{∑m

i=1(α1 − α2)I(T iOR < t1)
}
> 0, and (iii) ETTT1,TTT2

{∑m
i=1(T iOR − α1)I(t1 ≤ T iOR < t2)

}
> 0, which

are respectively due to (7.1), the assumption that α1 > α2 and the fact α1 < t1. However, (7.2) is a
contradiction to our definition of α2, which implies that ETTT1,TTT2

{∑m
i=1(T iOR − α2)I(T iOR < t2)

}
= 0.

Hence we must have α1 ≤ α2.
Part (b). The oracle threshold is defined as tOR = supt{t ∈ (0, 1) : QOR(t) ≤ α}. We want to
show that at tOR, the mFDR level is attained precisely. Let ᾱ = QOR(1). Part (a) shows that
the continuous function QOR(t) is non-decreasing. Then we always have QOR(tOR) = α if α < ᾱ.
Define δδδOR = {I(T iOR < tOR) : 1 ≤ i ≤ m}. Let δδδ∗ = (δ1∗, · · · , δm∗ ) be an arbitrary decision rule
such that mFDR(δδδ∗) ≤ α. It follows that

ETTT1,TTT2

{∑m
i=1(T iOR − α)δiOR

}
= 0 and ETTT1,TTT2

{∑m
i=1(T iOR − α)δi∗

}
≤ 0. (7.3)

Combining the two results in (7.3), we conclude that

ETTT1,TTT2

{∑m
i=1(δiOR − δi∗)(T iOR − α)

}
≥ 0. (7.4)

Next, consider a monotonic transformation of the oracle decision rule δiOR = I(T iOR < tOR) via
f(x) = (x − α)/(1 − x) (note that the derivative ḟ(x) = (1 − α)/(1 − x)2 > 0). The oracle

decision rule is equivalent to δiOR = I
(
T iOR−α
1−T i

OR
< λOR

)
, where λOR = tOR−α

1−tOR
. A useful fact is that

α < tOR < 1. Hence λOR > 0.
Note that (i) (T iOR−α)−λOR(1−T iOR) < 0 if δiOR > δi∗, and (ii) (T iOR−α)−λOR(1−T iOR) > 0

if δiOR < δi∗. Combining (i) and (ii), we conclude that the following inequality holds for all i:
(δiOR − δi∗)

{
(T iOR − α)− λOR(1− T iOR)

}
≤ 0. Summing over i and taking expectations, we have

ETTT1,TTT2

[
m∑
i=1

(δiOR − δi∗)
{

(T iOR − α)− λOR(1− T iOR)
}]
≤ 0. (7.5)

Combining (7.4) & (7.5), we have

λOR · ETTT1,TTT2

{
m∑
i=1

(δiOR − δi∗)(1− T iOR)

}
≥ ETTT1,TTT2

{
m∑
i=1

(δiOR − δi∗)(T iOR − α)

}
≥ 0.

Finally, note that λOR > 0 and that the ETP of a decision rule δδδ = (δ1, · · · , δm) is given by
ETTT1,TTT2

{∑m
i=1 δi(1− T

i
OR)

}
, we conclude that ETP(δδδOR) ≥ ETP(δδδ∗).

7.2. Proof of Theorem 2
Proof. We first provide a summary of useful notations.

• Qτ (t) = m−1∑m
i=1(T τ,iOR − α)I(T τ,iOR < t).

• Q̂τ (t) = m−1∑m
i=1(T̂ τ,iOR − α)I(T̂ τ,iOR < t).

• Qτ∞(t) = E{(T τOR−α)I(T τOR < t)}, where T τOR is a generic member from {T iOR : 1 ≤ i ≤ m}.
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Note that Qτ (t) and Q̂τ (t) are non-decreasing and right-continuous. We can further define

tτ∞ = sup{t ∈ (0, 1) : Qτ∞(t) ≤ 0}.

Part (a). In Proposition 5, we show that δδδτOR is conservative in mFDR control. To establish the
desired property in mFDR control, we only need to show that mFDR(δδδDD) = mFDR(δδδτOR) + o(1).

Define a continuous version of Qτ (t) as follows. For T
τ,(k)
OR < t ≤ T τ,(k+1)

OR , let

QτC(t) =
t− T τ,(k)OR

T
τ,(k+1)
OR − T τ,(k)OR

Qτk +
T
τ,(k+1)
OR − t

T
τ,(k+1)
OR − T τ,(k)OR

Qτk+1, (7.6)

whereQτk = Qτ
(
T
τ,(k)
OR

)
. It is easy to see thatQτC(t) is continuous and monotone. Hence the inverse

of QτC(t), denoted Qτ,−1
C , is well defined. Moreover, Qτ,−1

C is continuous and monotone. We can sim-

ilarly define a continuous version of Q̂τ (t), denoted by Q̂τC(t). Q̂τC(t) is continuous and monotone;
so does its inverse Q̂τ,−1

C (·). By construction, we have δδδτOR =
[
I
{
T τ,iOR ≤ Q

τ,−1
C (0)

}
: 1 ≤ i ≤ m

]
and δδδτDD =

[
I
{
T̂ τ,iOR ≤ Q̂

τ,−1
C (0)

}
: 1 ≤ i ≤ m

]
. We will show that

(i) Qτ,−1
C (0)

p−→ tτ∞ and (ii) Q̂τ,−1
C (0)

p−→ tτ∞. (7.7)

To show (i), note that the continuity of Qτ,−1
C (·) implies that for any ε > 0, we can find η > 0

such that
∣∣Qτ,−1

C (0)−Qτ,−1
C {QτC(tτ∞)}

∣∣ < ε if |QτC(tτ∞)| < η. Hence

P (|QτC(tτ∞)| > η) ≥ P
[∣∣Qτ,−1

C (0)−Qτ,−1
C {QτC(tτ∞)}

∣∣ > ε
]
.

Next, by the WLLN QτC(t)
p−→ Qτ∞(t). Note that Qτ∞(tτ∞) = 0, we have P (|Qτ (tτ∞)| > η) → 0. By

Markov inequality, we conclude that Qτ,−1
C (0)

p−→ Qτ,−1
C {QτC(tτ∞)} = tτ∞.

Next we show (ii). By inspecting the proof of (i), we only need to show that Q̂τC(t)
p−→ Qτ∞(t).

Denote a variable without index i (e.g. T̂ τOR and T τOR) as a generic member from the sample. It

follows from Condition (C2) and the continuous mapping theorem that T̂ τOR
p−→ T τOR. Note that

both T τOR and T̂ τOR are bounded above by 1. It follows that E(T̂ τOR − T τOR)2 → 0.
Let Ui = (T τ,iOR−α)I(T τ,iOR < t) and Ûi = (T̂ τ,iOR−α)I(T̂ τ,iOR < t). We will show that E(Ûi−Ui)2 =

o(1). To see this, consider the following decomposition

(Ûi − Ui)2 = (T̂ τOR − T τOR)2I(T̂ τOR ≤ t, T τOR ≤ t) + (T̂ τOR − α)2I(T̂ τOR ≤ t, T τOR > t)

+(T τOR − α)2I(T̂ τOR > t, T τOR ≤ t) = I + II + III.

The first term I = o(1) because E(T̂ τOR − T τOR)2 → 0. Let η > 0. Note that T τOR is continuous and

that T̂ τOR
p−→ T τOR, we have

P(T̂ τOR ≤ t, T τOR > t) ≤ P {T τOR ∈ (t, t+ η)}+ P
(
|T̂ τOR − T τOR| > η

)
→ 0.

Since T̂ τOR is bounded, we conclude that the second term II = o(1). Similarly we can show that
III = o(1). Therefore E(Ûi − Ui)2 = o(1).

Next we show that Q̂τ (t)
p−→ Qτ∞(t). Note that Qτ (t)

p−→ Qτ∞(t), we only need to show that

Q̂τ (t)
p−→ Qτ (t). The dependence among Ûi in the expression Q̂τ (t) = m−1∑

i Ûi creates some
complications. The idea is to apply some standard techniques for the limit of triangular arrays
that do not require independence between variables. Consider Sn =

∑m
i=1(Ûi−Ui). Then E(Sn) =

m{E(Ûi) − E(Ui)}. Applying standard inequalities such as Cauchy-Schwartz, we have E(Ûi −
Ui)(Ûj − Uj) = o(1). It follows that

m−2var(Sn) ≤ m−1E(Ûi − Ui)2 + (1 + o(1))E
{

(Ûi − Ui)(Ûj − Uj)
}

= o(1).
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Therefore E{Sn − E(Sn)/n}2 → 0. Applying Chebyshev’s inequality, we obtain

m−1 {Sn − E(Sn)} = Q̂τ (t)−Qτ (t)
p−→ 0.

Therefore Q̂τ (t)
p−→ Qτ∞(t). By definition, |Q̂τC(t)− Q̂τ (t)| ≤ m−1. We claim that Q̂τC(t)

p−→ Qτ∞(t)
and (ii) follows.

According to (i) and (ii) in (7.7), Q̂τ,−1
C (0) = Qτ,−1

C (0) + oP(1). The mFDR levels of the testing
procedures are:

mFDR(δδδτOR) =
PH0

(
T τ,iOR < Qτ,−1

C (0)
)

P
(
T τ,iOR < Qτ,−1

C (0)
) , and mFDR(δδδdd) =

PH0

(
T̂ τ,iOR < Q̂τ,−1

C (0)
)

P
(
T̂ τ,iOR < Q̂τ,−1

C (0)
) .

The operation of our testing procedure implies thatQτ,−1
C (0) ≥ α. It follows that P

(
T τ,iOR < Qτ,−1

C (0)
)

is bounded away from zero. We conclude that mFDR(δδδdd) = mFDR(δδδτOR) + o(1) and the result on
mFDR control follows.

The result on mFDR control can be extended to FDR control. The next proposition, which
is proved in the Supplement, first gives sufficient conditions under which the mFDR and FDR
definitions are asymptotically equivalent, and then verifies that these conditions are fulfilled by the
CARS procedure. It follows from the proposition that CARS controls the FDR at level α+ o(1).

Proposition 7. (a) Consider a general decision rule δδδ. Let Y = m−1∑m
i=1 δi. Then mFDR(δδδ) =

FDR(δδδ) + o(1) if (i) E(Y) ≥ η for some η > 0, and (ii) Var(Y) = o(1).

(b) Conditions (i) and (ii) are fulfilled by the CARS procedure δδδτdd.

Part (b). The CARS procedure utilizes q̂∗, and the corresponding test statistic is T̂ ∗,iOR. It follows

from Conditions (C1′) and (C2), and the continuous mapping theorem that T̂ ∗OR
p−→ TOR. Denote

QOR(t) the mFDR capacity function and tOR the oracle threshold. Then

QOR(t) = E{(TOR − α)I(TOR < t)}, tOR = sup{t ∈ (0, 1) : QOR(t) ≤ 0}.

Define Q̂∗(t) = m−1∑m
i=1(T̂ ∗,iOR − α)I(T̂ ∗,iOR < t). Similar to (7.6), we define a continuous version of

Q̂∗(t) and denote it by Q̂∗C(t). It can be shown that Q̂∗C(t) is continuous and monotone; so does

its inverse Q̂∗,−1
C (t). The CARS procedure is given by δδδ∗DD =

[
I
{
T̂ ∗,iOR ≤ Q̂

∗,−1
C (0)

}
: 1 ≤ i ≤ m

]
.

Following the steps in Part (a) we can show that

Q̂∗C(t)
p−→ QOR(t), Q̂∗,−1

C (t)
p−→ tOR. (7.8)

The operation of CARS implies that Q∗,−1
C (0) ≥ α (thus the denominator of the mFDR is bounded

away from zero). Note that mFDR(δδδOR) = α, we have mFDR(δδδ∗DD) = α+ o(1). Next, we consider

the ETP. It follows from T̂ ∗OR
p−→ TOR and (7.8) that

ETP(δδδ∗DD)

ETP(δδδOR)
=

PH1

{
T̂ ∗OR < Q̂∗,−1

C (0)
}

PH1 (TOR < tOR)
= 1 + o(1).

2
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Supplementary Material for “CARS: Covariate Assisted
Ranking and Screening for Large-Scale Two-Sample Inference”

This supplement contains the proofs of other theoretical results (Section A) and addi-
tional numerical results (Section B).

A. Additional Theory and Proofs of Other Results

A.1. Proof of Proposition 1
Proof. Let Ax = {x : x 6= 0}. According to the definition of θji and the conditional

independence assumption (2.5), we have

f(t1i, t2i|θ1i = 0, θ2i = 0) = f(t1i, t2i|µxi = 0, µyi = 0)

= f(t1i|µxi = 0, µyi = 0)f(t2i|µxi = 0, µyi = 0)

= f(t1i|θ1i = 0, µxi = µyi = 0)f(t2i|θ2i = 0, µxi = µyi = 0)

= f(t1i|θ1i = 0)f(t2i|θ2i = 0).

The last equality holds because given θji = 0, tji are just linear combinations of random
errors εxi and εyi, which are independent of µxi and µyi, j = 1, 2. Denote Gµx(·) the
distribution function of µxi. Then

f(t1i, t2i|θ1i = 0, θ2i = 1) =

∫
Ax

f(t1i, t2i|µxi = µyi = x)dGµx(x)

=

∫
Ax

f(t1i|θ1i = 0, µxi = µyi = x)f(t2i|µxi = µyi = x)dGµx(x)

= f(t1i|θ1i = 0)

∫
Ax

f(t2i|θ1i = 0, µxi = µyi = x)dGµx(x)

= f(t1i|θ1i = 0)f(t2i|θ1i = 0, θ2i = 1).

For the third equality, note that t1i are independent of both µxi and µyi given θ1i = 0,
whereas t2i are correlated with µxi and µyi given that θ1i = 0. Finally,

f(t1i, t2i|θ1i = 0) = f(t1i, t2i|θ1i = 0, θ2i = 0)P(θ2i = 0|θ1i = 0)

+f(t1i, t2i|θ1i = 0, θ2i = 1)P(θ2i = 1|θ1i = 0)

= f(t1i|θ1i = 0){f(t2i|θ1i = 0, θ2i = 0)P(θ2i = 0|θ1i = 0)

+f(t2i|θ1i = 0, θ2i = 1)P(θ2i = 1|θ1i = 0)}
= f(t1i|θ1i = 0)f(t2i|θ1i = 0).

Hence T1i and T2i are independent under the null hypothesis θ1i = 0. 2

A.2. Proof of Proposition 2
Proof. Part (a). We only need to show that qτ (t2) ≥ q∗(t2) for all τ . We first split

the joint density into two parts and then use the independence between T1i and T2i under
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the null:

qτ (t2) = (1− τ)−1
∫
t1∈Aτ

{f(t1, t2|θ1i = 0)P(θ1i = 0) + f(t1, t2|θ1i = 1)P(θ1i = 1)} dt1

≥ (1− τ)−1
∫
t1∈Aτ

q∗(t2)f10(t1)dt1 = q∗(t2).

The last equality holds because
∫
t1∈Aτ f10(t1)dt1 = 1− τ , which cancels with (1− τ)−1.

Part (b). Let R be the index set of hypotheses rejected by δδδτOR. The FDR of δδδτOR is

FDR(δδδτOR) = E
{∑

i∈R(1− θ1i)
|R| ∨ 1

}
= ETTT 1,TTT 2

[
E
{∑

i∈R(1− θ1i)
|R| ∨ 1

| TTT 1,TTT 2

}]
= ETTT 1,TTT 2

(
1

|R| ∨ 1

∑
i∈R

T iOR

)
,

where the last equality follows from the definition of the oracle statistic T iOR = E(1 −
θ1i|T1i, T2i). For all i ∈ R ⊂ I, we have T iOR ≤ T

τ,i
OR. It follows that

FDR(δδδτOR) ≤ ETTT 1,TTT 2

(
1

|R| ∨ 1

∑
i∈R

T τ,iOR

)
≤ α.

The last inequality is due to the operation of δδδτOR, which guarantees that

{|R| ∨ 1}−1
∑
i∈R

T τ,iOR ≤ α

for all realizations of (TTT 1,TTT 2). The result on mFDR holds since

E

{∑
i∈R

(1− θ1i)

}
≤ ETTT 1,TTT 2

(∑
i∈R

T τ,iOR

)
≤ αETTT 1,TTT 2

(|R| ∨ 1).

A.3. Proof of Proposition 3
Let Ñ = mG̃(τ) be the expected size of the screening set. Define

f̃τ2·(t2) = (1/Ñ )
∑

T2i∈T2(τ)

Kh2 (t2 − T2i) .

Then q̂τ (t2) = G̃(τ)
1−τ f̃

τ
2·(t2). Define the conditional density of T2i given that Pi > τ

fτ2·(t2) = f(t2|Pi > τ) = G̃(τ)
−1
∫
Aτ

f(t1, t2)dt1.

Then qτ (t2) = G̃(τ)
1−τ f

τ
2·(t2). It follows that

E ‖q̂τ − qτ‖2 =

{
G̃(τ)

1− τ

}2

E
∥∥∥f̃τ2· − fτ2·∥∥∥2 ,
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For a fixed τ , we only need to show that

E
∥∥∥f̃τ2· − fτ2·∥∥∥2 = E

∫ {
f̃τ2·(t2)− fτ2·(t2)

}2

dt2 → 0.

Let ET2|T1
denote the conditional expectation that is taken over T2i’s while holding T1i’s

fixed. The conditional density of T2 given T1 is denoted f2·(t2|T1i). We will work on the
bias and variance in turn. First,

ET2|T1
{Kh2(t2 − T2i)} = f2·(t2|T1i) +

h22
2
f
(2)
2· (t2|T1i)

∫
z2K(z)dz + o(h22).

Now consider E{f̃τ2·(t2)} = ET1
[ET2|T1

{f̃τ2·(t2)}]. It follows that

E{f̃τ2·(t2)} = (1/Ñ )ET1

[∑m
i=1

{
f2·(t2|T1i) +

h2
2

2 f
(2)
2· (t2|T1i)

∫
z2K(z)dz

+o(h22)
}
I (T1i ∈ Aτ )

]
= fτ2·(t2) +

h22
2
f
(2)
2· (t2|τ)

∫
z2K(z)dz + o(h22),

where f
(2)
2· (t2|τ) is defined in the proposition. The second equality holds because

ET1
{f(t2|T1i)I(T1i ∈ Aτ )} =

∫
Aτ

f2·(t2|t1)f(t1)dt1 = G̃(τ)fτ2·(t2).

We have assumed the square integrability of f
(2)
2· (t2|τ), according to which define

R
{
f
(2)
2|τ

}
=

∫
{f (2)2· (t2|τ)}2dt2.

It follows that the integrated squared bias is∫
[E{f̃τ2·(t2)} − f̃τ2·(t2)]2dt2 = (h42/4)R

{
f
(2)
2· (τ)

}
{µ2(K)}2(1 + o(1)),

where we use the notation µ2(K) =
∫
z2K(z)dz.

Next, we compute the variance term. Consider the following decomposition

Var{f̃τ2·(t2)} = VarT1 [ET2|T1
{f̃τ2·(t2)}] + ET1

[VarT2|T1
{f̃τ2·(t2)}],

where the first and second terms can be respectively computed as

VarT1
[ET2|T1

{f̃τ2·(t2)}] =
{
mG̃2(τ)

}−1 [∫
{f2|1(t2|t1)}2f1·(t1)dt1 − {f2·(t2)}2

]
{1 + o(1)},

ET1
[VarT2|T1

{f̃τ2·(t2)}] =
1

Ñh2

∫
Aτ

f2·(t2|t1)f1·(t1)dt1R(K){1 + o(1)}

= (mh2)−1fτ2·(t2)R(K){1 + o(1)}.

It is easy to see that the second term is the leading term (note that we fixed τk and let
m→∞). Hence ∫

Var{f̃τ2·(t2)}dt2 = (mh2)−1R(K){1 + o(1)}.

The common choice of bandwidth h ∼ m−1/5 makes E
∥∥∥f̃τ2· − fτ2·∥∥∥2 → 0, and the desired

result follows. 2
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A.4. Proof of Proposition 4
Part (a). The total approximation error can be computed as

Bq(τ) =

∫
|qτ (t2)− q∗(t2)|dt2 =

1−G(τ)

1− τ
− (1− π1) =

π1{1−G1(τ)}
1− τ

.

Noting that G1(1) = 1, and applying the mean value theorem, we have

d

dτ
Bq(τ) =

{1−G1(τ)} − g1(τ)(1− τ)

(1− τ)2
=
g1(ξ)− g1(τ)

1− τ

for some ξ ∈ (τ, 1). If G1 is concave, then g1(ξ)− g1(τ) < 0 and the desired result follows.

Part (b). Let η(x) = {1 − G1(x)}/(1 − x). If g1 satisfies limx↑1 g1(x) = 0, then using
L’Hospital’s Rule, we claim that limx↑1 η(x) exists and limx↑1 η(x) = limx↑1 g1(x) = 0.
Consider the following decomposition of the joint density∫

Aτ
f(t1, t2)dt1 =

∫
Aτ

{q∗(t2)f10(t1) + π1f(t2|t1, θ1i = 1)f1·(t1)}dt1.

Noting that both T1i and T2i are standardized, the conditional density f(t2|t1, θ1 = 1) is
bounded by some constant C0. Using the definition of η(x), we have

qτ (t2) = (1− τ)
−1
∫
Aτ

f(t1, t2)dt1 ≤ q∗(t2) + C0π1η(τ)

Applying L’Hospital’s Rule again, we have limτ↑1 q
τ (s) ≤ q∗(s). In Proposition 2.(a), we

have shown that qτ (s) ≥ q∗(s) for all τ . Combining the two inequalities, we conclude that
limτ↑1 q

τ (s) = q∗(s). Then the desired result follows. 2

A.5. Proof of Proposition 5
Proof. Proposition 4 defines η(x) = {1−G1(x)}/(1− x) and shows that

limτk→1q
τk(t2) = q∗(t2), |qτ (t2)− q∗(t2)| ≤ C0π1η(τ).

Note that G1(0) = 0 and G1(1) = 1. It follows from the concavity of G1 that η(τ) ≤ 1.
Moreover,

∫
{qτk(t2)− q∗(t2)}dt2 = π1η(τk). Hence∫

{qτk(t2)− q∗(t2)}2dt2 ≤ C0π1

∫
{qτk(t2)− q∗(t2)}dt2 = C0π

2
1η(τk)→ 0 (A.1)

when τk → 1, according to L’Hospital’s Rule and our assumption that limx↑1 g1(x) = 0.
Therefore, we only need to show that for a given τk,

E‖q̂∗ − qτk‖2 = E
[∫
{q̂∗(t2)− qτk(t2)}2dt2

]
m→0−−−→ 0.

Consider q̂∗(t2) defined in (3.13). Let

aj = k−1(ŝ2ŝ0 − ŝ21)−1{ŝ2 − ŝ1(τj − 1)}Khτ (τj − 1).
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Then q̂∗(t2) =
∑k
j=1aj q̂

τj ,
∑k
j=1 aj = 1 and

∑k
j=1 aj ≤ 1. Following similar steps in the

proof of Proposition 3,

E{q̂∗(t2)} = ET1
[ET2|T1

{q̂∗(t2)}]

=

k∑
j=1

aj
1−G(τj)

1− τj

[
f
τj
2· (t2) +

h22
2
u2(K)

∫
t1∈Aτj

f
(2)
2· (t2|t1)f1·(t1)dt1 + o(h22)

]

= qτk(t2) +
1

2
h2τq

τk,(2)(t2)C∗(K) + o(h2τ )

+
h22
2
u2(K)

k∑
j=1

aj
1−G(τj)

1− τj

∫
t1∈Aτj

f
(2)
2· (t2|t1)f1·(t1)dt1 + o(h22),

where C∗(K) is a kernel dependent constant. The last equality follows from Wand and
Jones (1995) (pp. 128) for kernel smoothing estimator at boundary points [applying the

theory to
∑k
j=1 ajq

τj (t2)]. Note that
1−G(τj)
1−τj ≤ 1 and

∑
j aj = 1, we have

k∑
j=1

aj
1−G(τj)

1− τj

∫
t1∈Aτj

f
(2)
2· (t2|t1)f1·(t1)dt1 ≤

∫
f
(2)
2· (t2|t1)f1·(t1)dt1.

According to the square integrability of qτk,(2)(t2) and f
(2)
2· (t2|τ), we can define

R
{
qτk,(2)

}
=

∫ {
qτk,(2)(t2)

}2

dt2,

R
{
f
(2)
t2|τ

}
=

∫ {
f
(2)
2· (t2|τ)

}2

dt2.

Then the leading term of
∫

[E{q∗(t2)} − qτk(t2)]2dt2 is bounded above by

1

2
h4τR

{
qτk,(2)

}
{C∗(K)}2 +

1

2
h42{u2(K)}2R

{
f
(2)
t2|τ

}
,

which converges to 0 when (m, k)→∞.
The argument below regarding the variance part does not pursue the study of the optimal

rate of convergence. In fact, the analysis is intractable because qτj are dependent quantities.
We have show in Proposition 3 that∫

Var{q̂τj (t2)}dt2 ≤ (mh2)−1R(K) {1 + o(1)}

for all τj . It follows that

Var{q̂∗(t2)} ≤ (mh2)−1R(K)(

k∑
j=1

a2k) {1 + o(1)}

≤ (mh2)−1R(K) {1 + o(1)} → 0

when m → ∞. We note that the actual convergence rate would be better because the
variance will be greatly reduced by averaging. Combining the results on the bias and
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variance terms, we have

E
∫
{q̂∗(t2)− qτk(t2)}2dt2 (A.2)

≤
[

1

2
h4τR(qτk,(2)){C∗(K)}2 +

1

2
h42{u2(K)}2R(f

(2)
t2|t1) +

R(K)

mh2

]
{1 + o(1)}.

Combining (A.1) and (A.2), we conclude that E ‖q̂∗ − q∗‖2 → 0 when (m, k)→ 0, complet-
ing the proof. 2

A.6. Proof of Proposition 6
Proof. We first point out that the arguments in this proof should be understood as

the conditional version (given that µxi and µyi are known). Define the following central
sample moments that are used in later calculations:

mxi =
1

nx

nx∑
j=1

(Xij − µxi), myi =
1

ny

ny∑
j=1

(Yij − µyi),

mxxi =
1

nx

nx∑
j=1

(Xij − µxi)2, myyi =
1

ny

ny∑
j=1

(Yij − µyi)2.

It follows that S2
xi = mxxi −m2

xi, S
2
yi = myyi −m2

yi. Next define central moments,

µxi3 = E(Xij − µxi)3, µyi3 = E(Yij − µyi)3,
µxi4 = E(Xij − µxi)4, µyi4 = E(Yij − µyi)4.

According to the CLT, we have

√
nxny
n



mxi

myi

mxxi

myyi

−


0
0
σ2
xi

σ2
yi


 L→ N(0,Σi), where

Σi =


γyσ

2
xi 0 γyµxi3 0

0 γxσ
2
yi 0 γxµyi3

γyµxi3 0 γy(µxi4 − σ4
xi) 0

0 γxµyi3 0 γx(µyi4 − σ4
yi)

 .

Let gi(s, t, u, v) =

 (s− t+ µxi − µyi)(γxv + γyu)−
1
2(

s+
γyu
γxv

t+ µxi +
γy
γx
µyi

){
(γxv + γyu)

γyu
γxv

}− 1
2

 . It follows that

ġi(0, 0, σ
2
xi, σ

2
yi) =(

σ−1pi −σ−1pi − 1
2γy(µxi − µyi)σ−3pi − 1

2γx(µxi − µyi)σ−3pi
σ−1pi κ

∗− 1
2

i σ−1pi κ
∗ 1

2
i − 1

2γy

(
µxi + µyi

γy
γx

)
σ−3pi (1 + 2κ∗i )κ

∗− 3
2

i
1
2γx

(
µxi + µyi

γy
γx

)
σ−3pi κ

∗ 1
2

i

)
.

The asymptotic variance-covariance matrix of
√
γxγyn(T1i, T2i)

ᵀ is

ΣiT1,T2
=

(
σ2
i (t1, t1) σ2

i (t1, t2)
σ2
i (t1, t2) σ2

i (t2, t2)

)
,
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where the entries can be computed by apply the Delta method:

σ2
i (t1, t1) = 1 + σ−4pi (µxi − µyi)

(
γ2xµyi3 − γ2yµxi3

)
+
σ−6pi

4
(µxi − µyi)2

{
γ3x
(
µyi4 − σ4

yi

)
+ γ3y

(
µxi4 − σ4

xi

)}
,

σ2
i (t1, t2) = −

σ−4pi
2

(µxi − µyi)
(
γ2xµyi3κ

∗ 1
2

i + γ2yµxi3κ
∗− 1

2
i

)
−
σ−4pi

2

(
µxi + µyi

γy
γx

){
γ2xµyi3κ

∗ 1
2

i + γ2yµxi3 (1 + 2κ∗i )κ
∗− 3

2
i

}
,

+
σ−6pi

4

(
µxi + µyi

γy
γx

)
(µxi − µyi)

{
γ3y (1 + 2κ∗i )κ

∗− 3
2

i

(
µxi4 − σ4

xi

)
− γ3xκ

∗ 1
2

i

(
µyi4 − µ4

yi

)}
,

σ2
i (t2, t2) = 1 + σ−4pi

(
µxi + µyi

γy
γx

){
κ∗i γ

2
xµyi3 − (1 + 2κ∗i )κ

∗−2
i γ2yµxi3

}
+
σ−6pi

4

(
µxi + µyi

γy
γx

)2 {
γ3xκ

∗
i

(
µyi4 − σ4

yi

)
+ γ3y (1 + 2κ∗i )

2
κ∗−3i

(
µxi4 − σ4

xi

)}
.

The off-diagonal terms degenerate to zero when (i) the null hypothesis µxi = µyi is true
and (ii) the distributions are symmetric, i.e. µy3i = µx3i = 0, completing the proof. 2

A.7. Proof of Proposition 7
The proposition can be considered as a special case of the theory in Section D of Basu et al.
(2017) and can be proved similarly. As the proofs in Basu et al. (2017) are done in different
settings with the weighted FDR definition and random weights, we provide the proof here
for completeness.

Proof. Part (a). Let X = m−1
∑m
i=1(1− θi)δi. Note that when Y = 0 we must have

X = 0. The asymptotic equivalence follows if we can show the following

mFDR(δδδ)− FDR(δδδ) ≤ E
{∣∣∣∣XY − XEY

∣∣∣∣ I(Y > 0)

}
= o(1). (A.3)

Since X ≤ Y and both are non-negative expressions, using Cauchy-Schwarz

E
{∣∣∣∣XY − XEY

∣∣∣∣ I(Y > 0)

}
= E

{
X
Y
I(Y > 0)

|Y − EY|
EY

}

≤

(
E |Y − EY|2

)1/2
EY

=
Var (Y)

1/2

EY
,

The desired result follows from Conditions (i) and (ii).

Part (b). According to the proof of Theorem 2, Part (a), P
(
T τ,iOR < Qτ,−1C (0)

)
is bounded
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away from zero, then there exists
∼
pα > 0, such that P

(
T τ,iOR < Qτ,−1C (0)

)
≥ ∼
pα. Therefore,

P
(
T̂ τ,iOR < Q̂τ,−1C (0)

)
= P

(
T τ,iOR < Qτ,−1C (0)

)
+ o(1),

m−1E

{
m∑
i=1

I
(
T τ,iOR < Qτ,−1C (0)

)}
= P

(
T τ,iOR < Qτ,−1C (0)

)
≥ ∼
pα > 0.

Let Y ′ = m−1
∑m
i=1 I(T

τ,i
OR ≤ tτ∞). Note that

Var(Y ′) = m−1Var
{
I
(
T τ,iOR ≤ t∞

)}
≤ m−1 = o(1).

To show that Var(Y) = o(1), use the decomposition

Var(Y) = Var(Y ′) + Var(Y − Y ′) + 2Cov(Y − Y ′,Y ′).

We only need to show that Var(Y − Y ′) = o(1). Then by Cauchy-Schwarz inequality and
using Var(Y ′) = o(1), it follows that

Cov(Y − Y ′,Y ′) = o(1).

Recall that T̂ τOR − T τOR = oP (1) and Q̂τ,−1C (0)− tτ∞ = oP (1). We have

Var(Y − Y ′) =m−2Var

[
m∑
i=1

{
I
(
T̂ τ,iOR < Q̂τ,−1C (0)

)
− I
(
T τ,iOR < tτ∞

)}]

≤m−2E

[
m∑
i=1

{
I
(
T̂ τ,iOR < Q̂τ,−1C (0)

)
− I
(
T τ,iOR < tτ∞

)}]2

=

(
1− 1

m

)
E

 ∏
k=i,j;i 6=j

{
I
(
T̂ τ,kOR < Q̂τ,−1C (0)

)
− I
(
T τ,kOR < tτ∞

)}
+

1

m
E
{
I
(
T̂ τOR < Q̂τ,−1C (0)

)
− I (T τOR < tτ∞)

}2

= o(1).

The last equality follows since

E

 ∏
k=i,j

{
I
(
T̂ τ,kOR < Q̂τ,−1C (0)

)
− I
(
T τ,kOR < tτ∞

)}
≤ E

[{
I
(
T̂ τ,iOR < Q̂τ,−1C (0)

)
− I
(
T τ,iOR < tτ∞

)}]
= o(1).

A.8. Effects of baseline removal (Remark 1)
This section explains that removing the baseline effects would not violate our assumption on
conditional independence. To fix ideas, we consider the application context of microarray
time-course experiments.

Let ξξξ denote the true baseline expression levels of m genes. Consider two time points x
and y. The (unknown) true effect sizes at these two time points are given by

µµµx = ξξξ + ηηηx, µµµy = ξξξ + ηηηy.
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Note that we do not require that ξξξ is sparse but some baseline measurements should
be available. By contrast, we assume that ηηηx = (ηxi : i = 1, · · · ,m) and ηηηy = (ηyi : i =
1, · · · ,m) are sparse vectors representing random perturbation effects from based line levels
ξξξ. The goal is to identify nonzero effects ηxi − ηyi 6= 0.

We observe Xi = µxi + εxi and Yi = µyi + εyi, with εxi ∼ N(0, 1) and εyi ∼ N(0, 1).
Moreover, we do not observe the true latent variable ξξξ. The baseline effects would be
measured (at time 0) with some errors Zi = ξi + εzi. We assume that εxi, εyi and εzi are
independent with each other. After removing the baseline effects, we have new observations:

X̃i = ξi + ηxi + εxi − (ξi + εzi);

Ỹi = ξi + ηyi + εyi − (ξi + εzi).

The pairs of differences and sums are given by

T1i = X̃i − Ỹi = (ηxi − ηyi) + (εxi − εyi);
T2i = X̃i + Ỹi = (ηxi + ηyi) + (εxi + εyi)− 2(ξi + εzi).

Under the null hypothesis ηxi = ηyi, the error terms εxi− εyi and εxi + εyi are independent,
and εxi − εyi is independent of ξi + εzi. Hence T1i and T2i satisfy the conditional indepen-
dence assumption (2.5), which further leads to Equation (2.6) that is needed in the CARS
methodology.

A.9. Proof of the claim in Remark 3
Proof. We study the special case where (i) the observations have equal sample size

and (known) equal variance σ2
xi = σ2

yi = σ2
i , and (ii) the two nonzero means have the same

magnitude with opposite signs µxi = −µyi. Then

(T1i, T2i) =

√
n

2σi
(X̄i − Ȳi, X̄i + Ȳi).

Next, note that X̄i = µxi + ε̄xi, Ȳi = −µxi + ε̄yi, where ε̄xi ∼ N(0, (2/n)σ2
i ) and ε̄yi ∼

N(0, (2/n)σ2
i ). We have

f(t1, t2) =

∫
f(t1, t2|µx = µ)dGµx(µ)

=

∫
f(t1|µx = µ)f2·(t2)dGµx(µ)

= f1·(t1)f2·(t2);

f(t2|θ1i = 0) = f(t2|µxi = µyi = 0) = f2·(t2).

It follows that the oracle statistic

TOR(t1, t2) =
(1− π1)f(t2|θ1i = 0)f10(t1)

f(t1, t2)
=

(1− π1)f10(t1)

f1·(t1)
,

which gives the Lfdr defined in (3.1).
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A.10. Proof of insufficiency and further explanation of Remark 7
We prove the claim in Remark 7 that the primary statistic is not a sufficient statistic. The
proof uses the notations in Section 4. We only need to provide a counter example. Consider
the following special case where the grouping variable Si takes two possible values 1 or 2
with equal probability:

P (Si = 1) = 0.5, P (Si = 2) = 0.5.

If Si = j, j = 1, 2, then Ti follows a mixture distribution

Ti ∼ (1− πj)N(0, 1) + πjN(1, 1),

where πj is the conditional proportion of non-null cases for group j. An equivalent way to
conceptualize the above model is to introduce an unknown location parameter µi: Ti|µi ∼
N(µi, 1), where µi follows a distribution with two point masses 0 and 1:

µi ∼ (1− πj)δ0 + πjδ1.

Here δ0 and δ1 are the Dirac delta functions centered at 0 and 1, respectively.
Now we prove Ti’s insufficiency. By definition, if Ti is sufficient, then P (Si = 1|Ti = t, µi)

should not depend on µi. However, some simple algebras give the following:

P (Si = 1|Ti = t, µ = 0) =
1− π1

2− π1 − π2
, P (Si = 1|Ti = t, µ = 1) =

π1
π1 + π2

,

and the desired result follows.

Remark 8. The ancilarity paradox means that Si seems to be “useless” for inference of
µi since it is an external variable and the location information should have been captured by
Ti. However, making inference using Ti alone would lead to substantial loss of information.
In this example, Si is called an ancillary component because (i) Ti alone is insufficient; (ii)
Si is ancillary; and (iii) (Ti, Si) is sufficient.

A.11. The conservative bivariate density estimator
We first present a formula that gives an equivalent expression for the bivariate density
function:

f(t1i, t2i) = (1− π2)f(t1i, t2i|θ2i = 0) + π2f(t1i, t2i|θ2i = 1)

= (1− π2)f10(t1i)f20(t2i) + f(t1i, t2i, θ2i = 1),

where the second equality follows from the logical relationship (2.2) and the conditional
independence between T1i and T2i under the null (Equation 2.6). The estimation of
f(t1i, t2i, θ2i = 1) requires the knowledge of θ2i, which is unknown in practice. We pro-
pose to estimate θ2i via a screening procedure θυ2i = I(Ri < υ), where Ri is a screening
statistic such as the Lfdr statistic or the p-value and υ is a tuning parameter. The R package
uses Lfdr2(t2i) as the screening statistic with the default screening level υ = 0.1.

Let Aυ = {(t1, t2) : Ri(t2) < υ}. Define the following test statistic

T υ,iOR(t1, t2) = q∗(t2)f10(t1)/fυ(t1, t2), (A.4)

where fυ(t1, t2) = (1−π2)f10(t1)f20(t2) +{G(υ)− (1−π2)G0(υ)}f(t1, t2|θυ2 = 1). Consider
the following index set W = {i : T iOR < 1 − π2}. This set can be viewed as the collection
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of “interesting” hypotheses that are worthy of further investigation. We shall study the
property of T i,υOR on W because hypotheses not in W would not have any impact in the
multiple testing problem – observe that π2 is small and large T iOR would not play a role in
inference according to the operation of Procedure 3.6.

The next proposition implies that the modified density estimator would lead to a con-
servative FDR control.

Proposition 8. Consider T υ,iOR defined in (A.4). If i ∈ W, then T iOR ≤ T
υ,i
OR.

Proof. We first show that if i ∈ W, then f(t1i, t2i) ≤ f(t1i, t2i|θ2i = 1). Note that

P(θ2i = 0|T1i = t1i, T2i = t2i) =
(1− π2)f(t1i, t2i|θ2i = 0)

(1− π2)f(t1i, t2i|θ2i = 0) + π1f(t1i, t2i|θ2i = 1)
.

If i ∈ W, it follows from the logical relationship (2.2) that

P(θ2i = 0|T1i = t1i, T2i = t2i) = P(θ1i = 0, θ2i = 0|T1i = t1i, T2i = t2i) ≤ T iOR < 1− π2.

Therefore f(t1i, t2i|θ2i = 0) ≤ f(t1i, t2i|θ2i = 1) for i ∈ W. Without causing ambiguity,
we focus on a generic hypothesis i ∈ W and drop the index i. It follows that f(t1, t2) =
(1− π2)f(t1, t2|θ2 = 0) + π2f(t1, t2|θ2 = 1) ≤ f(t1, t2|θ2 = 1). Hence

f(t1, t2, θ2 = 1) ≥ f(t1, t2, θ2 = 1, θυ2 = 1)

= P (θ2 = 1, θυ2 = 1)f(t1, t2|θ2 = 1, θυ2 = 1)

≥ Cυf(t1, t2|θυ2 = 1),

where Cυ = G(υ)− (1− π2)G0(υ), G(υ) = P(Ri < υ) and G0(υ) = P(Ri < υ|θ2i = 0). The
last equality follows from the following two facts

P(θυ2 = 1, θ2 = 1) = P (θυ2 = 1)− P (θυ2 = 1, θ2 = 0), and

f(t1, t2|θ2 = 1, θυ2 = 1) = f(t1, t2|θ2 = 1)IAυ/P (Aυ)

≥ f(t1, t2)IAυ/P (Aυ) = f(t1, t2|θυ2 = 1).

Therefore, we conclude that fυ(t1, t2) ≤ f(t1, t2) and the desired result follows. 2
Finally, we discuss how to estimate fυ(t1, t2). The first term (1− π2)f10(t1)f20(t2) can

be estimated by plugging in π̂2; the null densities f10 and f20 are known. The second term
can be rewritten as G(υ) {1−Q(υ)} f(t1, t2|θυ2 = 1), where Q(υ) = (1 − π2)G0(υ)/G(υ)
can be viewed as the mFDR level of I(Ri < υ) for testing hypothesis θ2i = 0. In practice,
G(·) can be estimated by the empirical CDF G(υ) = m−1

∑m
i=1 I(Ri < υ). To estimate

f(t1, t2|θυ2i = 1), we apply the R package ash to the sample T = {i : Ri < υ}. [The ash

package uses the average shifted histogram, which seems to, according to our numerical
studies, provide better estimation than the more standard package np.] The ash package
only calculates the density on grids, we further use the function interp surface in the R
package fields to interpolate the estimated density. When the Lfdr is used for screening,
Q(υ) can be estimated as [cf. Sun and Cai (2007)]

Q̂(υ) =

∑m
i=1 I{L̂fdr2(t2i) < υ}L̂fdr2(t2i)∑m

i=1 I(L̂fdr2(t2i) < υ)
.

When the p-value is used for screening, we use the well known estimate Q̂(υ) = υ/G(υ) [cf.
Benjamini and Hochberg (2000); Genovese and Wasserman (2002)].
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A.12. Screening via Lfdr: formulae and implementation
Consider a screening procedure based on ζi < τ , where ζi := ζi(t1i) is a screening statistic
and τ > 0 is a tuning parameter. Denote G(τ) the CDF of ζi. Let Aτ = {x : ζ(x) > τ} and
S(τ) = P (Aτ ) the survival function. Then

qτ (t2) = lim
h→0

E{Qτ (t2, h)}
h

= S(τ)−1
∫
Aτ

f(t1, t2)dt1, (A.5)

which can be estimated by

q̂τ (t2) =

∑
i∈T (τ)Kh2 (t2 − t2i)

mŜ(τ)−1
. (A.6)

In the p-value approach, we have an explicit correction factor of 1 − τ . The factor is now
replaced by Ŝ(τ). If the Lfdr is used for screening, then a new correction factor would be
needed. We can simulate B data points (e.g. B = 105) from the null distribution N(0, 1)
and calculate their Lfdrs using the method in Sun and Cai (2007), where the parameters
are estimated using the primary statistics {t1i : 1 ≤ i ≤ m}. The correction factor is then
obtained as the proportion of Lfdrs exceeding τ .
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B. Supplementary Numerical Results

B.1. The case with unknown and equal variances
Let εxij ∼ N(0, 1) and εyik ∼ N(0, 1). Set nx = 50, ny = 60. Therefore our κ =

ny
nx

= 1.2.
We compute T1i and T2i using estimated variances. The following settings are considered
in our simulation study.

Setting 1: we set µx,1:k = 5/
√

30, µx,(k+1):(2k) = 4/
√

30, µx,(2k+1):m = 0, µy,1:k = 2/
√

30,

µy,(k+1):(2k) = 4/
√

30 and µy,(2k+1):m = 0. We vary k from 100 to 1000.

Setting 2: we use k1 and k2 to denote the number of nonzero locations and the number
of locations with differential effects, respectively. Let µx,1:k2 = 5/

√
30, µx,(k2+1):k1 =

4/
√

30, µx,(k1+1):m = 0, µy,1:k2 = 2/
√

30, µy,(k2+1):k1 = 4/
√

30 and µy,(k1+1):m = 0.
We fix k1 = 2000 and vary k2 from 200 to k1.

Setting 3: the sparsity level is fixed at k = 750. We set µx,1:(k) = µ0/
√

30, µx,(k+1):(2k) =

3/
√

30, µx,(2k+1):m = 0, µy,1:k = 2/
√

30, and µy,(k+1):(2k) = 3/
√

30, µy,(2k+1):m = 0.
We vary µ0 from 3.5 to 5.

In Settings 1-3, we apply different methods to the simulated data and obtain results by
averaging over 500 replications. We plot the FDR and Average Power levels as functions of
varied parameter values. The results are displayed in Figure 6. We can similarly see that
both CARS and US are more powerful than conventional univariate methods such BH and
AZ, and CARS is superior than US.

B.2. Comparison with sample splitting when θ1i = θ2i
Similar to the general setting, we set nx = 50, ny = 60 and construct the primary and
auxiliary statistics accordingly. We consider two simulation settings.

Setting 1: µx,1:k = 5/
√

30, µx,(k+1):m = 0, µy,1:k = 2/
√

30 and µy,(k+1):m = 0. Vary k
from 50 to 1000 to investigate the effect of sparsity on testing results.

Setting 2: the sparsity level is fixed at k = 500, µy,1:m = 0, µz,1:k = µ0/
√

30, and
µz,(k+1):m = 0. Vary µ0 from 1.5 to 3.5 to investigate the impact of effect sizes.

The sample splitting (SS) method has been added to the comparison. Specifically, SS
splits both nx and ny into two equal parts. The first half of data are used to compute
the initial p-values. We then use the p-value cut-off 0.05 to select locations and use these
locations for the second stage analysis. Next the second stage p-values are computed for
the selected locations using the second half of the data. Finally we apply the BH procedure
to the second stage p-values and record the decisions. The results are displayed in Figure
7. The following observations can be made based on the simulation.

(a). All methods can control the FDR at the nominal level 0.05, with BH slightly conser-
vative and US very conservative.

(b). DD can be very conservative in many settings but still enjoys substantial power gain
over competing methods.

(c). Univariate methods (BH and AZ) can be greatly improved by US, which is further
improved by CARS.
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Fig. 6. General Case (Unknown Variance): the FDR and average power varied by non-null proportion
(top row) and conditional proportion (bottom row). The displayed procedures are DD (◦), BH (4),
OR (�), AZ (+) and US (�).
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Fig. 7. The special case when θ1i = θ2i.

(d). Setting 1 shows that the gain in efficiency decreases as k increases.

(e). Setting 2 shows that the efficiency gain of CARS increases as k2 increases.

(f). The sample splitting method is inefficient.

B.3. Stability of tuning
This section investigates the robustness of tuning. Let T (τ) = {i : Lfdr1(t1i) > τ}. We
first examine the performance of CARS wrt the choice of τ by focusing on the case when
θ1i and θ2i are perfectly correlated. The following settings are considered:

Setting 1: same as Setting 1 in Section 5.2, except that k = 500. Vary τ from 0.6 to 0.9.

Setting 2: same as Setting 1 above, except that µµµx,1:500 = 4/
√

50. Vary τ from 0.6 to 0.9.

Setting 3: same as Setting 1, except that k = 1, 000. Vary τ from 0.6 to 0.9.

Setting 4: same as the Setting 3, except that µµµx,1:1000 = 4/
√

50. Vary τ from 0.6 to 0.9.
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We apply the oracle procedure (OR) and the data-driven CARS procedure (DD) to the

simulated data and record the FDR, power and size of Ŝ = {L̂fdr1 > τ}. Note that for OR,
we always have Card(S) = 4500 or 4000. The results are summarized in Figure 9. We can
see that the value of τ affects the size of Ŝ and in general provides better error control when
it is large. This is consistent with our theory in Proposition 4. However, to avoid inflated
variability in estimated quantities, we do not recommend larger τ ’s. As a rule of thumb,
our practical recommendation is to take τ = 0.9 to ensure both precise error control and
stability of the methodology.

Next we investigate the stability of CARS wrt the choice of υ in (A.4). We fix τ = 0.9
and vary υ from 0.1 to 0.3. The following settings are considered:

Setting 1: same as Setting 1 in Section 5.2, except that k = 50.

Setting 2: same as Setting 1 above, except that µµµx,1:50 = 4/
√

50.

Setting 3: same as Setting 1, except that k = 100.

Setting 4: same as the Setting 3, except that µµµx,1:100 = 4/
√

50.

The results are summarized in Figure 9. We can see that the value of υ affects the size
of T̂ but in general does not affect the FDR or power. As a rule of thumb, our practical
recommendation is to take υ = 0.1.

B.4. Comparison of ranking
A fundamental aspect of the multiple comparison issue is ranking. For example, if a biologist
has a limited budget and asks us to provide a list of top k genes (say, k = 10). Then on
top of FDR control, s/he may care more about how many true findings are actually in the
list that we provide. We carry out a small simulation study to compare different methods
when k2 = 20. The goal is to show that, by exploiting the auxiliary information, CARS
yields a much better ranking (in the sense that for a pre-specified budget, namely a fixed
number of rejections, CARS identifies more true positives than competing methods).

Consider the case with the unknown and equal variances. Let εxij ∼ N(0, 1) and εyik ∼
N(0, 1). Set nx = 50, ny = 60. Therefore κ =

ny
nx

= 1.2. Number of repetitions is 100.

The number of genes m = 5000. Setting: µµµx,1:20 = 5/
√

50, µµµx,21:40 = 4/
√

50, µµµx,41:m = 0,
µµµy,1:20 = 2/

√
50, µµµy,21:40 = 4/

√
50, µµµy,41:m = 0. We vary number of rejections k from 5 to

20, and calculate for even given k, how many true positives are in the top k hypotheses.
The rankings are based on p-values (BH), Lfdr statistics (Sun and Cai 2007), oracle statistic
TOR (OR, proposed with known parameters), and data-driven statistic T̂ τOR (DD, proposed
with estimated parameters), respectively. The expected number of true positives (ETP) is
calculated based on the average of 100 simulated data sets. We can see from Figure 10 that
the ranking of CARS is superior compared to other methods.

B.5. Dependent tests
This section presents a small simulation study to investigate the performance of CARS
under dependence.
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Fig. 8. Effect of τ . The displayed procedures are DD (◦), OR (4).
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Fig. 9. Effect of υ. The displayed procedures are DD (◦), OR (4).
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Fig. 11. Comparison of methods under weak dependence.

We demonstrate the performance of CARS under the setting with the unknown and
equal variances case. Let Σ be the covariance matrix.

Σi,i = 1, i = 1, · · · ,m,
Σi,i+1 = 0.5, i = 1, · · · ,m− 1,

Σi−1,i = 0.5, i = 2, · · · ,m,
Σi,i+2 = 0.4, i = 1, · · · ,m− 2,

Σi−2,i = 0.4, i = 3, · · · ,m.

All other entries equal to zero. Let εxxxj ∼ N(0,Σ) and εyyyk ∼ N(0,Σ). Set nx = 50, ny = 60.
Therefore κ =

ny
nx

= 1.2. Number of repetitions is 100. m = 2000.

Setting: We set µµµx,1:k = 5/
√

50, µµµx,(k+1):2k = 4/
√

50, µµµx,(2k+1):m = 0, µµµy,1:k =

2/
√

50, µµµy,(k+1):2k = 4/
√

50, µµµy,(2k+1):m = 0. We vary k from 100 to 500. The results
are summarized by Figure 11. Both OR and DD seem to work well for FDR control. How-
ever, we want to emphasize that the simulation results here are very limited and we do
not intend to draw any conclusions based on these results. Meanwhile, we conjecture that
CARS would still be asymptotically valid under some weak dependence assumptions.
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B.6. Supernova Example Images
Here we provide additional numerical results for the analysis in Section 5.5 in the main text.
Figure 12 shows the rejected pixels in the 516× 831 layout for each method under different
FDR levels.

Nominal FDR level 0.01%

Nominal FDR level 1%

Nominal FDR level 5%

Fig. 12. Left to right: BH procedure, Adaptive Z procedure, Uncorrelated Screening, CARS.

B.7. Analysis of the Microarray Time-Course (MTC) Data
In this section we apply the CARS procedure to the MTC dataset collected by Calvano
et al. (2005) for studying systemic inflammation in humans. This dataset contains eight
study subjects which are randomly assigned to treatment and control groups and then
administered with endotoxin and placebo, respectively. Affimetrix U133A chips were used
to profile the expression levels of 22,283 genes in human leukocytes measured before infusion
(0 hour) and at 2, 4, 6, 9, and 24 hours afterwards. One of the goals in this experiment
is to identify, in the treatment group, early to middle response genes that are differentially
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expressed within 4 hours and thus revealing meaningful early activation gene sequence which
could potentially govern the immune responses.

We first preprocess the data according to the steps discussed in Sun and Wei (2011).
To further identify the genes that regulate this sequence, we take time point 0 as the
baseline and time point 4 and 24 as the interval over which differential gene expressions are
estimated. Denote Yj,i as the average gene expression value for gene i at time point j. Let

Ỹj,i = Yj,i − Y0,i denotes the baseline adjusted expression level for gene i at time point j.
The primary and auxiliary statistics are

(T1i, T2i) =

√
1

2

(
Ỹ4,i − Ỹ24,i

Sp
,
Ỹ4,i + κ̂∗Ỹ24,i√

κ̂∗Sp

)

where m = 22, 283, S2
y,4 = Var(Ỹ4,i), S

2
y,24 = Var(Ỹ24,i), κ̂

∗ = S2
y,4/S

2
y,24 and S2

p = S2
y,4 +

S2
y,24. At FDR level 0.05, our CARS procedure discovered 429 differentially expressed genes

among the total of 22, 283 genes. By contrast, BH procedure discovered 121 genes.

B.8. Comparison of mFDR and FDR
This section investigates the asymptotic equivalence of mFDR and FDR in different settings.
In our simulation, we choose m = 5000, nx = 50, ny = 60, µµµx,1:k = 5/

√
30, µµµx,(k+1):(2k) =

4/
√

30, µµµx,(2k+1):m = 0 and µµµy,1:k = 3/
√

30, µµµy,(k+1):(2k) = 4/
√

30 and µµµy,(2k+1):m = 0.
The sparsity level k is varied from 150 to 1000.

We apply the oracle CARS procedure (OR) and data-driven CARS procedure (DD) to
the simulated data sets. The mFDR is computed as the ratio of the average number of false
positives over the average number of rejections. The FDR is computed as the average of false
discovery proportions. The results are obtained based on 200 replications and summarized
by Figure 13. We can see that the FDR and mFDR levels are very similar for both the OR
and DD methods.
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Fig. 13. Asymptotic equivalence of mFDR and FDR for OR and DD


